
A fast, effective local search for scheduling independent jobs in heterogeneous
computing environments

Graham Ritchie and John Levine

Centre for Intelligent Systems and their Applications
School of Informatics, University of Edinburgh

Appleton Tower, Crichton Street, Edinburgh, EH8 9LE
Graham.Ritchie@ed.ac.uk

Abstract

The efficient scheduling of independent computational jobs
in a heterogeneous computing (HC) environment is an im-
portant problem in domains such as grid computing. Find-
ing optimal schedules for such an environment is (in general)
an NP-hard problem, and so heuristic approaches must be
used. Work with other NP-hard problems has shown that so-
lutions found by heuristic algorithms can often be improved
by applying local search procedures to the solution found.
This paper describes a simple but effective local search pro-
cedure for scheduling independent jobs in HC environments
which, when combined with fast construction heuristics, can
find shorter schedules on benchmark problems than other so-
lution techniques found in the literature, and in significantly
less time.

Introduction & Motivation
The efficient scheduling of independent computational jobs
in a heterogeneous computing (HC) environment such as a
computational grid is clearly important if good use is to be
made of such a valuable resource. However finding optimal
schedules in such a system has been shown, in general, to
be NP-hard (it is a generalised reformulation of SS8 from
(Garey & Johnson 1979)).

Static scheduling algorithms can be used in such a system
for several different requirements (Braunet al. 2001). The
first, and most common, is for planning an efficient sched-
ule for some set of jobs that are to be run at some time in
the future, and to work out if sufficient time or computa-
tional resources are available to complete the runa priori.
Static scheduling may also be useful for analysis of hetero-
geneous computing systems, to work out the effect that los-
ing (or gaining) a particular piece of hardware, or some sub-
network of a grid for example, will have. Static scheduling
techniques can also be used to evaluate the performance of
a dynamic scheduling system after it has run, to check how
effectively the system is using the resources available. Fi-
nally, static scheduling techniques can also be applied to a
dynamic scheduling problem. If the static scheduler is fast
enough that it could be run in ‘batch mode’ every few sec-
onds to schedule jobs that have arrived on the system since
the last scheduler run. This may allow a dynamic scheduler
to make better decisions (Maheswaranet al. 1999), as in-
stead of simply scheduling each task as it arrives, a batch

processor 1 processor 2
job 1 2 3
job 2 3 4
job 3 4 5
job 4 5 6

Table 1: An example ETC matrix. The figures indicate the
time that processorm is expected to take to execute jobn.
This is aconsistentETC matrix, as processor 1 is consis-
tently faster than processor 2.

mode dynamic scheduler has more resource requirement in-
formation at once and so can make more informed decisions.

Simulation Model
Real-world HC systems, such as a computational grid, are
complex combinations of hardware, software and network
components and so it is often hard to make fair comparisons
of the different techniques that are being used on various dif-
ferent systems. To address this problem (Braunet al. 2001)
describes a benchmark simulation model for comparison of
static scheduling algorithms for HC environments. They
define the notion of ametataskas a collection of indepen-
dent jobs with no inter-job dependencies, and the goal of a
scheduling algorithm is to minimise the total execution time
of the metatask. As the scheduling is performed statically
all necessary information about the jobs in the metatask and
processors in the system is assumed to be availablea priori.
Essentially, the expected running time of each individual job
on each processor must be known, and this information can
be stored in an ‘expected time to compute’ (ETC) matrix. A
row in an ETC matrix contains the ETC for a single job on
each of the available processors, and so any ETC matrix will
haven × m entries, wheren is the number of jobs andm
is the number of processors. A simple example ETC matrix
with details for 4 jobs and 2 processors is given in table 1.

In any real heterogeneous computing system the running
time of a particular job is not the only factor that must be
taken into consideration when allocating jobs, the time that it
takes to move the executables and data associated with each
job should also be considered. To resolve this the entries
in the ETC matrix are assumed to include such overheads.
Also, if a job is not executable on a particular processor (for



whatever reason) then the entry in the ETC matrix is set to
infinity.

In order to simulate various possible heterogeneous
scheduling problems as realistically as possible (Braunet
al. 2001) define different types of ETC matrix according to
three metrics:task heterogeneity, machine heterogeneityand
consistency. The task heterogeneity is defined as the amount
of variance possible among the execution times of the jobs,
two possible values were defined:high and low. Machine
heterogeneity, on the other hand, represents the possible
variation of the running time of a particular job across all the
processors, and again has two values:highandlow. In order
to try to capture some other possible features of real schedul-
ing problems, three different ETC consistencies were used:
consistent, inconsistentandsemi-consistent. An ETC matrix
is said to be consistent if whenever a processorpj executes a
job ji faster than another processorpk, thenpj will execute
all other jobs faster thanpk. A consistent ETC matrix can
therefore be seen as modelling a heterogeneous system in
which the processors differ only in their processing speed.
In an inconsistent ETC a processorpj may execute some
jobs faster thenpk and some slower. An inconsistent ETC
matrix could therefore simulate a network in which there are
different types of machine available, e.g. a UNIX machine
may perform jobs that involve a lot of symbolic computa-
tion faster than a Windows machine, but will perform jobs
that involve a lot of floating point arithmetic slower. A semi-
consistent ETC matrix is an inconsistent matrix which has a
consistent sub-matrix of a predefined size, and so could sim-
ulate, for example, a computational grid which incorporates
a sub-network of similar UNIX machines (but with differ-
ent processor speeds), but also includes an array of different
computational devices.

These different considerations combine to leave us with
12 distinct types of possible ETC matrix (e.g. high task,
low machine heterogeneity in an inconsistent matrix, etc.)
which simulate a range of different possible heterogeneous
systems. The matrices used in the comparison study of
(Braunet al. 2001) were randomly generated with various
constraints to attempt to simulate each of the matrix types
described above as realistically as possible. The methods
used to generate the matrices are briefly described here. Ini-
tially a m × 1 ‘baseline’ vectorB is generated by repeat-
edly selectingm uniform random floating point values from
between 1 andφb, the upper bound on values inB. Then
the ETC matrix is constructed by taking each valueB(i)
in B and multiplying it by a uniform random numberxi,k

r
which has an upper bound ofφr. xi,k

r is known as arow
multiplier. Each row in the ETC matrix is then given by
ETC(ji, pk) = B(i) × xi,k

r for 0 ≤ k ≤ n. The vec-
tor B is not used in the actual matrix. This process is re-
peated for each row until them × n matrix is full. Each
of the different task and machine heterogeneities described
above is modelled by using different baseline values: high
task heterogeneity was represented by settingφb=3000 and
low task heterogeneity usedφb=100. High machine hetero-
geneity was represented by settingφr=1000, and low ma-
chine heterogeneity was modelled usingφr=10. To model
a consistent matrix each row in the matrix was sorted inde-

pendently, with processorp1 always being the fastest, and
pm being the slowest. Inconsistent matrices were not sorted
at all and are left in the random state in which they are gen-
erated. Semi-consistent matrices are generated by extract-
ing the row elements{0, 2, 4, . . .} of each rowi, sorting
them and then replacing them in order, while the elements
{1, 3, 5, . . .} are left in their original order, this means that
the even columns are consistent while the odd columns are
(generally) inconsistent.

For their study 100 matrices were generated of each of
the 12 possible types, modelling 16 processors and 512 jobs
for all matrices. Exactly the same matrices used their study
were used in the experiments described below.

Current techniques

Static scheduling

(Braun et al. 2001) provides a comparison of 11 static
heuristics for scheduling in HC environments, and the reader
is referred there for details of the various schemes that are
used. A range of simple greedy construction heuristic ap-
proaches are compared and some of these are briefly de-
scribed below.

OLB Opportunistic Load Balancingassigns each job in
arbitrary order to the processor with the shortest schedule,
irrespective of the ETC on that processor. OLB is intended
to try to balance the processors, but because it does not take
execution times into account it finds rather poor solutions.

MET Minimum Execution Timeassigns each job in arbi-
trary order to the processor on which it is expected to be
executed fastest, regardless of the current load on that pro-
cessor. MET tries to find good job-processor pairings, but
because it does not consider the current load on a processor
it will often cause load imbalance between the processors.

MCT Minimum Completion Timeassigns each job in ar-
bitrary order to the processor with the minimum expected
completion timefor the job. The completion time of a job
j on a processorp is simply the ETC ofj on p added to
p’s current schedule length. This is a much more success-
ful heuristic as both execution times and processor loads are
considered.

Min-min establishes the minimum completion time for
every unscheduled job (in the same way as MCT), and then
assigns the job with theminimumminimum completion time
(hence Min-min) to the processor which offers it this time.
Min-min uses the same intuition as MCT, but because it con-
siders the minimum completion time for all jobs at each it-
eration it can schedule the job that will increase the overall
makespan the least, which helps to balance the processors
better than MCT.



Max-min is very similar to Min-min. Again the minimum
completion time for each job is established, but the job with
the maximumminimum completion time is assigned to the
corresponding processor. Max-min is based on the intuition
that it is good to schedule larger jobs earlier on so they won’t
‘stick out’ at the end causing a load imbalance. However
experimentation shows that Max-min cannot beat Min-min
on any of the test problems used here.

The best solution technique found in (Braunet al. 2001)’s
comparison was a genetic algorithm (GA). The GA de-
scribed works onchromosomeswhich represent a complete
solution to the problem. Each chromosome is simply a ar-
ray of n elements, in which positioni represents jobi, and
each entry in the array is a value between 1 andm which
represents the processor to which the corresponding job is
allocated. The main steps of the algorithm are described be-
low.

1. Generate an initial population of 200 chromosomes. Two
policies were used; either use 200 randomly generated
chromosomes, or use 199 randomly generated ones, plus
the Min-min solution (known asseedingthe population).

2. Evaluate the ‘fitness’ of each individual. The fitness is
defined simply as the makespan of the solution encoded
by a chromosome, a lower fitness is therefore preferable.

3. Create the next generation using:

• Selection of the fitter individuals. A rank-based roulette
wheel scheme was used that duplicated individuals
with a probability according to their fitness. Anelitist
strategy was also employed which guarantees that the
fittest individual is always duplicated in the next gener-
ation.

• Crossover between random pairs of individuals. Single
point crossover was used and each chromosome was
considered for crossover with a probability of 60%.

• Random mutation of individuals. A chromosome is
randomly selected, then a random task in the chromo-
some is randomly assigned to a new processor. Every
chromosome is considered for mutation with a proba-
bility of 40%.

4. While the stopping criteria are not met, repeat from step 2.
The GA stops when either 1000 iterations have been com-
pleted, there has been no change in the elite chromosome
for 150 iterations, or all chromosomes have converged to
the same solution.

This GA finds the best or equal best solutions to all the
ETC matrix types tested in (Braunet al. 2001), although it
does takes significantly longer that Min-min which was the
second best technique for most problems (around 60 seconds
compared to under a second for Min-Min).

Dynamic scheduling
(Maheswaranet al. 1999) describes several heuristics for
dynamically scheduling independent jobs in HC environ-
ments. The approaches are separated into two main groups:

immediate modeheuristics, which schedule jobs immedi-
ately as they arrive at the scheduler, andbatch modeheuris-
tics, which wait for some period of time and then schedule
a ‘batch’ of ready jobs at once. The simulation model used
in this study uses the same ETC matrix types as (Braunet
al. 2001), but also includes a discrete event simulator which
models the job arrival rate and other features, such as modi-
fying the actual execution time of a given job.

Local search cannot be combined with the immedi-
ate mode heuristics, and so these are not discussed here.
The batch mode heuristics, however, are essentially static
scheduling heuristics which are used after a timeout (either
a fixed time interval or after some fixed number of jobs have
arrived) to schedule all newly arrived jobs. As noted ear-
lier using a batch mode heuristic may allow the scheduler
to make more informed decisions. The Min-min heuristic
is again tested and performs well, but is slightly outper-
formed by a newly proposed algorithm known as theSuffer-
ageheuristic (SH). SH essentially allocates a job to a pro-
cessor if that job would ‘suffer’ most were it not allocated
to that processor. Thesufferage valueof a jobji is defined
as the difference between its earliest completion time (on
some processorpa) and its second earliest completion time
(on some other processorpb), i.e. allocatingji to pa will
give the best completion time forji, and allocating it topb

will give the second best completion time. The algorithm is
briefly described below (for a more detailed description see
(Maheswaranet al. 1999)).

Firstly all processors are marked as unassigned. An arbi-
trary jobjk from the list of unallocated jobs is selected and
the processorpm that gives the earliest completion time for
jk is established. Ifpm is unassigned thenjk is tentatively
allocated topm, pm is marked as assigned, andjk is re-
moved from the list of unallocated jobs. If, however,pm has
already been assigned to some other jobjl thenjl is unal-
located frompm and added back into the list of unallocated
jobs. The sufferage value ofjk andjl is then established and
the job that has the highest value is selected, allocated topm

and removed from the list of unallocated jobs. The job that
was not selected will not be considered again until the next
iteration. Once all jobs have been considered this process is
repeated until all jobs have been allocated. The results pro-
vided in (Maheswaranet al. 1999) shows that SH generally
outperforms both Min-min and immediate mode techniques
for their test problems.

The local search procedure

Work in related NP-hard problems, such as bin packing (e.g.
(Alvim et al. 1999), (Levine & Ducatelle 2003)), suggests
that solutions built by many heuristic techniques can often
be improved by using a local search procedure to take the
solution to its local optimum in the search space. The im-
portant consideration in any local search procedure is how
to define theneighbourhoodof a solution. there are many
possible neighbourhood definitions for this problem, but an
obvious one is simply to consider solutions which differ by
some number of job assignments. The procedure used here
is described below.



In any solution there will be one or more ‘problem’ pro-
cessors - those with schedule lengths equal to the makespan
of the whole solution - and it seems sensible to try to reduce
their makespan as this will immediately reduce the over-
all makespan of the solution. The local search procedure
therefore considers all solutions which differ by swapping a
job from a problem processor with another job from another
processor. This means that for any solution there will be
a× (n− a) neighbouring solutions according to this defini-
tion (wherea is the number of jobs assigned to the problem
processor).

Considering job swaps between processors is effective,
but as only single job pair swaps are considered the number
of jobs assigned to any processor will remain constant. For
some solutions it may also be useful to consider job transfers
from one processor to another as well (as noted in (Thiesen
1998)). The local search algorithm therefore also consid-
ers solutions which differ by transferring a single job from a
problem processor to another processor. For this case there
will be a× (m− 1) neighbouring solutions.

The neighbourhood of a solution is therefore defined as all
solutions which differ from the original solution by a single
job transfer from a problem processor to another processor,
or which differ by a single job pair swap. This leaves us with
a total neighbourhood size of(a× (n−a))+(a× (m−1)).
Some of these neighbouring solutions will have a longer
makespan than the original solution and so these are ig-
nored. This leaves us with a subset of the neighbouring so-
lutions which have a smaller makespan than the original so-
lution. Some local search procedures simply select the first
improved solution that is found - a ‘first-ascent approach’.
Experimentation showed that exhaustively considering all
improved neighbours and then selecting the one that reduces
the maximum makespan of the two processors the most (a
‘best-ascent’ approach) worked best here. The procedure
as a whole therefore exhaustively analyses the entire neigh-
bourhood of the solution and selects the best neighbour as
the new solution. This process is then repeated until no im-
proved neighbour can be found. A simple example of this
local search is shown in figure 1.

Experimental results

Static scheduling

We applied the local search to solutions produced by a num-
ber of heuristics and to solutions picked at random. Experi-
mentation showed that using Min-min to generate an initial
solution produced the best results overall. Results are there-
fore shown for running Min-min and then the local search
procedure described above, compared with the GA and Min-
min results from (Braunet al. 2001). Tests were performed
on 1.6-2 GHz Linux machines, and all programs were writ-
ten in Java.

Table 2 shows the average makespans found and average
time taken (in seconds) by each technique on the 100 in-
stances of each ETC matrix class. The different classes and
instances are identified according to the following scheme:
w-x-yyzz.n, where:

Figure 1: A simple example of the local search. The so-
lution on the left hand side shows the Min-min solution to
the ETC matrix shown in table 1, this has a makespan of
10. The local search finds that the solution formed by trans-
ferring j2 from p2 to p1 (as shown in the solution on the
right hand side) which reduces the makespan to 9, is the best
neighbour and so this is the solution selected. There are al-
ternative neighbours with makespans of 9 but the procedure
does not distinguish between these and so the first such solu-
tion found in selected. No improved neighbouring solution
can then be found, and so the local search terminates. Note,
however, that this is only a local optimum, and is not the
globally optimal solution, asj2 and j4 allocated top1, and
j1 andj3 allocated top2would have a makespan of 8.

• w denotes the probability distribution used; only uniform
distributions were used so this isu for all files.

• x denotes the type of consistency, one of:

– c: consistent matrix
– i: inconsistent matrix
– s: semi-consistent

• yy denotes the task heterogeneity, one of:

– hi: high heterogeneity
– lo: low heterogeneity

• zz denotes machine heterogeneity, one of

– hi: high heterogeneity
– lo: low heterogeneity

• n is the test case number, numbered from 0 to 99.

It is clear from these results that the local search can effec-
tively improve the Min-min solution, finding significantly
shorter makespans than the GA, the best technique found in
(Braunet al. 2001). The time taken by using Min-min and
then the local search is consistently under half a second, and
so even taking into account differences in machine speeds,
this combination is significantly faster than the GA. The lo-
cal search does not seem to be affected by the class of ETC
matrix used - it consistently finds shorter makespan for all
classes tested.

It should be noted that although combining Min-min and
the local search gave the best results overall, the local search
procedure can effectively improve solutions generated by
every method tested, although it does take significantly



Min-min GA Min-min+LS
type makespan time makespan time makespan time

u-c-hihi 8428258.43 0.17 7906149.42 63.88 7667606.81 0.49
u-c-hilo 162745.18 0.17 155604.90 64.65 153990.94 0.39
u-c-lohi 283083.40 0.16 266723.49 62.99 258656.25 0.49
u-c-lolo 5460.25 0.15 5221.13 65.01 5167.83 0.38
u-i-hihi 3632360.64 0.22 3206790.90 68.93 3053883.41 0.32
u-i-hilo 82413.30 0.24 76969.72 66.70 75594.93 0.33
u-i-lohi 122044.94 0.24 108747.50 68.54 103355.06 0.32
u-i-lolo 2777.16 0.25 2599.61 66.07 2552.42 0.32
u-s-hihi 4897763.92 0.19 4436362.83 64.73 4255904.34 0.34
u-s-hilo 105157.39 0.18 99117.78 64.25 97587.99 0.33
u-s-lohi 163927.91 0.16 149018.93 63.17 142941.47 0.35
u-s-lolo 3527.45 0.17 3323.14 63.03 3275.20 0.33

Table 2: Results of running the local search on the solutions found by Min-min compared with the results from (Braunet al.
2001) for Min-min and the GA. The best result for each problem is shown in bold.

longer to locally optimise poor solutions such as those gen-
erated at random.

Dynamic scheduling
This section provides results for applying the local search
procedure to the solutions found by both Min-min and a
re-implementation of the SH algorithm described in (Ma-
heswaranet al. 1999). The complex event simulator used in
(Maheswaranet al. 1999) was not available for these exper-
iments, however because we are simply interested in estab-
lishing if the local search procedure can improve solutions
found by SH, the same ETC matrices used in the static prob-
lem can be used here for comparison. The SH implementa-
tion tested does not appear to perform better on these entire
instances than Min-min, but it is not designed to be used for
such large ETC matrices, so by reducing the number of jobs
to be scheduled we give it a more similar problem to that
used in the dynamic environment simulator. Experiments
using only 64 jobs (and 16 processors as before) show that
SH does often outperform Min-min on smaller problems.

The makespans found and time taken by Min-min, Min-
min plus local search, SH and SH plus local search for
scheduling the first 64 jobs from the first problem (i.e. where
n is 0) in each ETC matrix class are shown in table 3. (All
100 instances in each class were not used as these results
are merely intended to show the effect of applying the local
search procedure to Min-min and SH, and so provide moti-
vation to testing it in a dynamic environment. A full test run
is therefore unnecessary.)

These results are not directly comparable with those pro-
vided in (Maheswaranet al. 1999), but they do indicate that
the local search can effectively improve solutions found by
both the SH and Min-min algorithms, and can do so suffi-
ciently quickly that it could be used effectively in conjunc-
tion with such construction heuristics in a batch mode dy-
namic scheduling system.

It is interesting to note that although SH generally out-
performs Min-min (except in two cases,u-c-lohi.0andu-i-
lolo.0), after local search is applied to their initial solutions
SH only outperforms Min-min on 7 of the 12 problems. An-
other interesting result is that for some problems, such asu-

s-lohi.0, SH finds a shorter initial makespan than Min-min,
but the local search procedure can improve the Min-min so-
lution more than it can the SH solution. These results are
therefore rather inconclusive as to which is the best over-
all approach to use. Perhaps, given the very short running
times, both approaches could be tested and the best overall
solution used.

These results are promising, but before any useful conclu-
sions can be drawn more experimentation is required to find
out if the local search can work as well when used in a more
realistic dynamic environment (such as the simulator used in
(Maheswaranet al. 1999)).

Conclusions

Scheduling independent jobs in heterogeneous computing
environments is useful for several different considerations in
domains such as grid computing. The local search procedure
described here can improve solutions found by both static
and dynamic scheduling heuristics, finding the best known
makespans for some benchmark problems. The local search
procedure is very simple, but experimentation shows that it
can significantly improve solutions built by several construc-
tion heuristics.

Further work could experiment with alternative local
search techniques, such as using different solution neigh-
bourhood definitions and altering the method used to select
a new solution. A tabu search (Glover & Laguna 1997) ap-
proach, using a similar neighbourhood definition to that used
here, could also help to overcome local optima in the search
space and further improve solutions. Moreover, the results
provided here suggest that future researchers looking at en-
tirely new solution methods for such problems should con-
sider combining them with local search techniques, as they
can significantly improve solutions for comparatively little
effort.

Acknowledgments

We would like to thank Tracy Braun and Howard Siegel for
sharing their test data and detailed results with us.



Min-min Min-min+LS SH SH+LS
problem makespan time makespan time makespan time makespan time

u-c-hihi.0 1760833.29 0.00 1281095.56 0.06 1646667.56 0.05 1461943.25 0.05
u-c-hilo.0 28912.38 0.00 24429.20 0.00 27062.69 0.05 23091.48 0.05
u-c-lohi.0 57232.30 0.06 42061.37 0.06 62706.13 0.05 52613.48 0.05
u-c-lolo.0 998.92 0.05 771.26 0.05 880.11 0.00 770.37 0.06
u-i-hihi.0 703868.21 0.05 565575.25 0.05 619191.40 0.05 565575.25 0.00
u-i-hilo.0 12176.13 0.00 10298.82 0.00 10527.72 0.00 9610.98 0.00
u-i-lohi.0 23604.18 0.05 19683.95 0.05 21160.64 0.00 20844.77 0.00
u-i-lolo.0 493.57 0.06 445.01 0.06 541.95 0.00 418.61 0.00
u-s-hihi.0 1190978.03 0.05 872214.06 0.05 1090510.22 0.00 848478.41 0.00
u-s-hilo.0 21627.07 0.00 15529.14 0.00 15935.55 0.00 15027.31 0.00
u-s-lohi.0 30529.32 0.06 19808.53 0.06 28839.41 0.00 24003.64 0.00
u-s-lolo.0 925.05 0.06 616.20 0.06 792.78 0.05 599.37 0.05

Table 3: Results of running the local search on the solutions found by Min-min and the Sufferage heuristic scheduling the first
64 jobs in each ETC matrix onto 16 processors. The best result for each problem is shown in bold.

References
Alvim, A. C. F.; Glover, F.; Ribiero, C. C.; and Aloise, D. J.
1999. Local search for the bin packing problem. available
from: http://citeseer.ist.psu.edu/alvim99local.html.
Braun, T. D.; Siegel, H. J.; Beck, N.; Bölöni, L. L.; Mah-
eswaran, M.; Reuther, A. I.; Robertson, J. P.; Theys, M. D.;
Yao, B.; Hensgen, D.; and Freund, R. F. 2001. A compar-
ison of eleven static heuristics for mapping a class of in-
dependent tasks onto heterogeneous distributed computing
systems. Journal of Parallel and Distributed Computing
61(6):810–837.
Garey, M. R., and Johnson, D. 1979.Computers and In-
tractability: A Guide to the theory of NP-Completeness.
San Francisco: Freeman and Company.
Glover, F., and Laguna, M. 1997.Tabu Search. Boston:
Kluwer Academic publishers.
Levine, J., and Ducatelle, F. 2003. Ant colony optimi-
sation and local search for bin packing and cutting stock
problems. Journal of the Operational Research Society.
(forthcoming).
Maheswaran, M.; Ali, S.; Siegel, H. J.; Hensgen, D.; and
Freund, R. F. 1999. Dynamic mapping of a class of in-
dependent tasks onto heterogeneous computing systems.
Journal of Parallel and Distributed Computing59:107–
131.
Thiesen, A. 1998. Design and evaluation of tabu search al-
gorithms for multiprocessor scheduling.Journal of Heuris-
tics 4:141–160.


