Method for experimental determination of Z dependence of impurity transport on JET

Giroud, C. and Barnsley, R. and Buratti, P. and Coffey, I.H. and von Hellermann, M. and Jupen, C. and Lawson, K.D. and Meigs, A. and O'Mullane, M. and Whiteford, A.D. and Zastrow, K.-D. and Contributors, JET EFDA (2007) Method for experimental determination of Z dependence of impurity transport on JET. Nuclear Fusion, 47 (4). pp. 313-330. ISSN 0029-5515

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

The prediction of impurity peaking in future fusion devices such as ITER necessitates the study of the dependence on Z of the impurity transport in present devices. In this paper we describe a novel technique to determine the transport of impurities with different atomic numbers independently. A technique has been developed that allows simultaneously the measurement of the transport of Ne and Ar in the same discharge while minimizing the systematic errors in the spectroscopic measurements. The reproduction of the charge-exchange measured densities, absolute vaccum ultra-violet line intensities and absolute soft x-ray intensity is achieved in an impurity transport simulation. The method used to estimate the errors on the transport coefficients of neon (Ne) and argon (Ar) is presented. In the plasma region where the diffusion and convection coefficients are determined for hybrid discharges, the transport of Ne and Ar is observed to exceed neoclassical predictions. In the same regions, the diffusion coefficients of both impurities are similar. The convection coefficients are also comparable for Ne and Ar. The peaking of Ne and Ar density profiles are comparable during the period where the intermittent slow reconnecting n = 1 mode is stable in these hybrid discharges.