Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Many-Beam Dynamical Simulation of Electron Backscatter Diffraction Patterns

Winkelmann, Aimo and Trager-Cowan, Carol and Sweeney, Francis and Day, Austin P. and Parbrook, Peter (2007) Many-Beam Dynamical Simulation of Electron Backscatter Diffraction Patterns. Ultramicroscopy, 107 (2007). pp. 414-421. ISSN 0304-3991

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

We present an approach for the simulation of complete electron backscatter diffraction (EBSD) patterns where the relative intensity distributions in the patterns are accurately reproduced. The Bloch wave theory is applied to describe the electron diffraction process. For the simulation of experimental patterns with a large field of view, a large number of reflecting planes has to be taken into account. This is made possible by the Bethe perturbation of weak reflections. Very good agreement is obtained for simulated and experimental patterns of gallium nitride GaNf0001g at 20 kV electron energy. Experimental features like zone-axis fine structure and higher-order Laue zone rings are accurately reproduced. We discuss the influence of the diffraction of the incident beam in our experiment.