Picture of blood cells

Open Access research which pushes advances in bionanotechnology

Strathprints makes available scholarly Open Access content by researchers in the Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) , based within the Faculty of Science.

SIPBS is a major research centre in Scotland focusing on 'new medicines', 'better medicines' and 'better use of medicines'. This includes the exploration of nanoparticles and nanomedicines within the wider research agenda of bionanotechnology, in which the tools of nanotechnology are applied to solve biological problems. At SIPBS multidisciplinary approaches are also pursued to improve bioscience understanding of novel therapeutic targets with the aim of developing therapeutic interventions and the investigation, development and manufacture of drug substances and products.

Explore the Open Access research of SIPBS. Or explore all of Strathclyde's Open Access research...

Thermal properties of heat exchanger fouling

Mulholland, Anthony and Gomatam, Jagannathan (2001) Thermal properties of heat exchanger fouling. In: Unione Italiana di Termofluidodinamica. Unione Italiana di Termofluidodinamica, pp. 149-154.


Download (180kB)| Preview


    The heat transfer capabilities of industrial heat exchangers are reduced by the build-up of insulating deposits (fouling) on their surfaces. This has an adverse environmental impact due to the necessary increase in energy consumption and the subsequent depletion of nonrenewable fuel sources. Studies of the microstructure of material obtained from heat exchanger surfaces in pulverised coal combustion plants, highlight their geometrical self-similarity over a range of length scales. We will discuss a methodology for estimating the thermal properties of these materials which utilises these self-similarity properties using fractal analysis and renormalisation. The self-similar microstructure of the fouling materials is captivated by a family of random fractals called shuffled Sierpinski carpets (SSC). The thermal conductivity of the SSC can then be predicted both from its box counting fractal dimension and via a generalised real space renormalisation method. This latter approach also affords an analysis of the percolation threshold of two phase fractal media.