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ABSTRACT

The heat transfer capabilities of industrial heat exchangers are reduced by the build-up of insulating de-
posits (fouling) on their surfaces. This has an adverse environmental impact due to the necessary increase in energy
consumption and the subsequent depletion of nonrenewable fuel sources. Studies of the microstructure of material
obtained from heat exchanger surfaces in pulverised coal combustion plants, highlight their geometrical self-similarity
over a range of length scales. We will discuss a methodology for estimating the thermal properties of these materials
which utilises these self-similarity properties using fractal analysis and renormalisation. The self-similar microstruc-
ture of the fouling material is captured by a family of random fractals called shuffled Sierpinski carpets (SSC).
The thermal conductivity of the SSC can then be predicted both from its box counting fractal dimension and via
a generalised real space renormalisation method. This latter approach also affords an analysis of the percolation

threshold of two phase fractal media.

1 INTRODUCTION

The build-up of insulating deposits on the surfaces of in-
dustrial heat exchangers seriously inhibits their heat trans-
fer capabilities. This has an adverse environmental impact
due to the necessary increase in energy consumption and
the subsequent depletion of nonrenewable fuel sources [1,
2]. The work reported here is part of a recent collabo-
ration funded within the framework of the JOULE pro-
gramme aimed at improving our understanding of the for-
mation mechanisms of fouling and its physical properties
[3]. The fouling deposits arise from the interaction of vari-
ous transport and chemical processes. In this paper we will
focus on porous fouling material composed of small parti-
cles which have been transported to the surface by a gas
stream. Studies of the microstructure of material obtained
from heat exchanger surfaces in pulverised coal combus-
tion plants, highlight their geometrical self-similarity over
a range of length scales [4]. In section 2 we will discuss
a methodology for estimating the thermal properties of
these materials which utilises these self-similarity proper-
ties using fractal analysis and renormalisation. The in situ
determination of the physical properties of these materi-
als is intrinsically difficult and so, to test our hypotheses,
we have simulated the fouling material using a comput-
erised Monte Carlo type method. Their thermal properties
are then estimated by numerically solving the steady-state
heat equation using finite differences. This approach is
computationally very intensive however. This is due both
to the large matrices involved and the high number of iter-

ations required to obtain reasonable accuracy. Therefore,
this approach is limited to only a few orders of magnitude
size range in the particles. We provide a brief report on
our recent findings in section 3.

2 REAL SPACE RENORMALISATION GROUP
THEORY

In this section we describe a class of random fractals
known as shuffled Sierpinski carpets (SSC) which can ade-
quately capture the self-similar microstructure of the foul-
ing material. The thermal conductivity of these fractals
can be determined both by a real space renormalisation
approach and from its box counting fractal dimension. The
former approach also affords an analysis of the percolation
threshold of two phase fractal media.

We start by defining the deterministic Sierpinski Car-
pet (SC) [5] set. The initial configuration or pre-fractal
is the unit square which we denote by E, € IR?2. We
divide Ej into nine squares of side length one third and
remove the middle square. The union of the eight re-
maining squares we denote by E;. FEach element of F;
is treated in a similar fashion, whereby a central square
of side length one ninth is removed from each of them.
Repeating this process we get a decreasing sequence of
nonempty compact sets FEpy1 C E,. The Sierpinski Car-
pet set F' is then given by, F = ()2, E,. We denote
the length scale of the remaining squares at generation
level n by 6 = (1/3)" and the number of such squares as
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N(6) = 8". The box counting dimension can be shown to
equal dimpF = lims_,o log(N(8))/log(1/$6).

We now stipulate that the removed squares (or tremas)
are conducting particles and that the set F' forms an insu-
lating pore network. This basic model can then be gener-
alised by allowing the tremas to occupy (non-overlapping)
random locations, that is we shuffle or mix the conducting
particles in the insulating matrix F'. In this way the tremas
can come into contact with each other and hence a conduct-
ing (or percolation) path through this two-phase medium
can be established. By varying d and n a range of particle
size distributions can be easily prescribed. The area of F’
is given by the sum of an infinite series as 1 —§2/(1 — N§?)
for N62 < 1, and so by requiring this to equal zero, as in
the deterministic SC, we obtain

N@) = = —1. )

Since the corresponding box-counting dimension is given
by dimpF = Log(3s — 1)/Log(1/5) we get the following
relationship between dimpgF and ¢,

6% 4 o> dimeF _1 =, (2)

It can be seen therefore that we get the full range of
dimensions dimpF € [1,2] for § € [0, (=1 4+ v/5)/2]. We
can use this framework to simulate a family of SSC’s ,
governed by Eq. (1), on computer (see Figure 1).

Figure 1: A Shuffled Sierpinski Carpet (SSC) with phase
A (white) conductivity 04 = 0 and phase B (black) con-
ductivity op = 1 and 6 = 0475, n = 6, W = 27,
v = 17, p3°° = 0.784371, W& = {61,29,14,7,3,1},
N = {1,4,12,41,139,477} and dimpF = 1.66.

The SSC can of course yield to a standard real space
renormalisation group (RSRG) approach [6] for the calcu-
lation of its thermal conductivity. However, we will show
that the estimates obtained can be improved upon by re-
vising the probability structure. Denote the set F' by phase
A and the tremas by phase B, which have volume fraction
p%so, say. Also denote the intrinsic conductances of the
pure substances A and B as o4 and op respectively. A
square grid is placed over the structure where the size of
the grid elements corresponds to the smallest monophase
particle. The grid is then divided up into groups of 2 x 2
cells or renormalisation clusters to form the next tessella-
tion B;. In general 3, is renormalised to 3,41 by replacing
every renormalisation cluster in ., by a cell whose effective
conductivity is equivalent to the effective conductivity of
that renormalisation cluster. The process continues until
the mean cluster size tends to zero and the effective con-
ductivity is obtained from the single cell which remains.
The effective conductivity of a cluster is estimated by Kir-
choff’s laws via, 0¢ = o102/(01 + 02) + 0304/(03 + 04).
Initially there are 16 possible cluster configurations and so
the number of phases will grow exponentially as the renor-
malisation transformation is repeatedly applied, each with
effective conductances lying between o4 and op. To en-
able some analytic headway the phases are averaged into
two phases at each renormalisation iteration [6]. We have
compared the effective conductivity calculated in this way
and that obtained numerically by allowing the multi-phase
distribution to persist [4] and the results show that the
RSRG approach deviates quite substantially from the non-
averaged value (see Figure 2). This is because the RSRG
approach is appropriate for materials where each of the 16
cluster configurations occurs with equal probability. How-
ever the size distribution of the tremas in the SSC greatly
affects these probabilities. This leads to a revised proba-
bility structure which is detailed in Table 1.

Table 1. Probability distribution of cluster classes in the
Shuffled Sierpinski Carpet.

Class Probability IP75¢
ATA \

I Al A (1-0)*ps
AlA ,

il — 46(1 — 9)3py

o FRA L 40201 - 0)%ps + 1721 — 60)%ps
B|A

v PATA L 90210 - 6)%p, 4 1/2(1 — 0)2ps
B|B
B| A

Vv 5TH 463(1 — )py + 26(1 — )po
B | B

VI 5TH 0*ps + 6°ps + 1
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We generate the SSC on a square grid of dimensions
W x W, where W = 27, as this allows easy identification of
the renormalisation clusters at each renormalisation level
~. The smallest trema in the SSC dictates the initial grid
size and so v = [—nlogd /log2] (where [z] denotes the least
integer greater than or equal to z). The overall side length
of the SSC is [W§™] grid cells (where [z] denotes the near-
est integer to x). Let p; denote the probability that a given
cell is in phase B and is part of a trema of cell dimension
greater than or equal to 2. Let py denote the probability of
being in a cell bordering one of the tremas associated with
p1. Finally, let py denote the probability of a cell being in
the remaining area, that is py = 1 —p; —p2. The density of
the unitary (1 x 1) phase B cells in phase A is denoted by
0. The derivation of the probability structure in Table 1 is
described elsewhere [4] but numerical investigations show
that it provides a better model of the SSC than the stan-
dard structure [6]. We can utilise this probability structure
to examine the dependence of the percolation threshold [7]
of the SSC on ¢ and n.

Theorem. The number of generation levels n* required to
achieve percolation threshold in o SSC, with length gener-
ator § is

_log(2 = 6% —25*)

log(1 — 62) ®)
where the volume fraction of phase B is,
+SSC S 8 o 1 2\2n—2
P50 = (301 =8 -2 = )1 - )
—(% iy %54)(1 _ @yl )

Proof. The percolation threshold is achieved at the (un-
stable) fixed point of the renormalisation group transfor-
mation given by p73+1 = p). That is,

VI
PEH = Z P}
i=1V
= 1/41 '+ 1/2IP} o+ I/ZIP]V + 3/4IP"Z + IP;}I
That is,
1/4IP +1/21P}, girt 1/2IPI”{, — 1/2IP& =0
ie.

(L=6)”+6(1—6)—26")ps —p> =0. ()

Now for large W we have W = §—", N(§) = 1/6%> — 1 and
)

n—1 12 i—1

Hence, p = pi(1 —p1) = (1 — (1 - 6*)" 1)1 — 6%}
ps = (1 —62)?""2 and
0 (6)71 1/W2 (1/62 _ 1)77,—1/6—277, _ 52

1—p1) (1—a2)nt

(
Therefore (x) can now be written,
(1=8)""1(2-62-20*) =1
and hence
. log(2 — 6% — 26%)
n*=1-—
log(1 — 682)

Now p3SSC = SV IPY = (262 — 0*)ps + (1 — 1/2(1 —
6)?)p2 + p1 and substituting using the above we obtain the
result.

So for example if § = 0.2, then n* = 18. Note that to
test this hypothesis would be difficult using a numerical
method such as the Hoshen-Kopelman algorithm [8] since
the corresponding matrix containing the original tessella-
tion would have some 10%° elements ! Here p3’ ¢ = 0.636
which is significantly higher than that for the non-fractal
case (piffandom = 0.618 = (—1+/5)/2). We can view the
SSC as a poorly mixed or lumpy counterpart of the non-
fractal case and hence requires a far larger phase B volume
fraction for a percolation path to be achieved.

We can take advantage of this by utilising the simpler
RSRG structure of the non-fractal case to calculate the ef-
fective thermal conductivity of the SSC by using an equiv-
alent volume fraction p3°¢. Thus we reduce the volume
fraction of the SSC by a factor determined by the dif-
ference between pi¥°C and pifiandom. That is, pp°C =
(1 = (p75C¢ — pyfiandom))p2SC. The revised model gives
a better estimate of the thermal conductivity for the SSC
(see Figure 2) particularly as we near percolation thresh-
old. Note that as § — 0%, dimgF — 2 and n* — oo. So
we see that as F fills two dimensional space more effec-
tively we require exponentially more generation levels of
conducting tremas to form a spanning cluster.

3 THERMAL CONDUCTIVITY OF SHUFFLED
SIERPINSKI CARPETS

In this section we use the SSC geometry as a model for
the fouling geometry discussed in section 1. As such the
tremas now act as the insulator whilst the set F' acts as
the conducting medium. Of course it is still possible to
use a RSRG approach to estimate the thermal conductiv-
ity but here we adopt a second approach which provides
an estimate for the thermal conductivity as a function of
dimBF.

By utilising bounds on the thermal conductivity of ran-
dom media in the limit of low porosity Thovert et al [9]
were able to derive an expression for the thermal conduc-
tivity o of regular fractals, By stipulating that the con-
stituent particles of F' have unit conductivity we get the
following estimate for the thermal conductivity of a SSC,
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1— 5(27dimBF) .
W) ) (5)

where n is the number of generation levels in the construc-
tion of the fractal and g is a morphological parameter char-
acterising the pore shape (as the structures are defined on
a square lattice we take g = 0.27 [9]).

o=

In applying this formula to naturally occurring deposits,
or indeed Monte Carlo simulations, we must determine the
parameters §, dimgF and n. The W x W binary ma-
trix, which describes the SSC geometry, can be recoded
using the Hoshen-Kopelman algorithm [8] to assign a dis-
tinct integer to each of the d individual tremas. The size
distribution of these pores ¢ = {(6;, N;) : i = 1,...,d}
can then be readily determined, where the pore size §
is the square root of the number of cells in the particu-
lar pore. The remaining surface area ¢; at length scale
0; follows the scaling law ¢; 62.2_dimBF , where ¢; =
1—37%_ 1 67Nj. A least squares estimate of the gradient
of a log-log plot of ¢; versus §;, allied with Eq.(2) provides
an estimate for the length scale generator 6*. Hence, an
estimate for the number of generation levels is given by
n* = log(6*Min{d;}/Max{d;})/logdé*. This technique has
been successfully tested on objects of known fractal param-
eters and good least squares fits have been obtained with
random deposit structures [4].

Due to the paucity of experimental cross-sectional im-
ages we have employed Monte Carlo simulations to provide
more realistic geometries of fouling deposits. Here we have
the added benefit that we have knowledge of and control
over the various particle transport mechanisms and deposit
formation mechanisms. Such simulations can incorporate
a range of transport mechanisms, particle sticking prob-
abilities and particle size distributions, and also interface
easily with bulk flow calculations at the boundary layer in-
terface [4]. A typical simulated deposit is shown is Figure
3.

We have tested Eq.(5) by first solving the Laplace equa-
tion in F and then, from Fourier’s law, calculating the
thermal conductivity [10]. This can obviously only be
conducted for low generation levels of the SSC or Monte
Carlo simulations consisting of only a few tens of thou-
sands of particles. A full description of the methodology
and results is presented in [4]. In summary, the results are
very encouraging and this improves as the generation level
increases. Unfortunately the computer memory require-
ments preclude high generation level calculations. This
approach seems to provide good estimates for the thermal
conductivity of the SSC and the algorithm used to recover
the underlying length scale generator and fractal dimen-
sion is robust.

4 CONCLUSIONS

Recent experimental evidence suggests that the geom-
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Figure 2: Relative errors € in estimates for the thermal con-
ductivity o of the Shuffled Sierpinski Carpet using renor-
malisation with the standard probability distribution (—)
and that using renormalisation with the revised probability
structure (»). The calculations are shown for 100 different
SSC which satisfy § € [0.3,0.4], n € {1,...,5}, 64 = 0.05
and op = 0.8 (the estimate for each particular SSC is av-
eraged over 100 realisations).
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Figure 3: A Monte Carlo simulation of fouling geometry
(2.5 x 10* mono-dispersed particles)
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etry and thermal conductivity of fouling deposits grow-
ing in industrial heat exchanger environments can be de-
scribed by a fractal model. We have developed theoretical
models for the thermal conductivity of two dimensional
cross-sections of such materials, based on renormalisation
group techniques and fractal methodologies. We restrict
our attention to two phase composites whose particle size
distribution we model using a Shuffled Sierpinski Carpet
(SSC) structure. This model led to a revised probability
structure in a Real Space Renormalisation analysis of the
structure. In this way we derived estimates of the thermal
properties but this framework also affords an analytical
hold on the percolation threshold behaviour of finite gen-
eration SSC’s. The SSC can be viewed as a poorly mixed
counterpart of a mono-dispersed, random two-phase me-
dia. As such the volume fraction of conducting tremas
at percolation threshold is always higher. We were able
to derive an equation relating the generation level of the
SSC to its length scale generator at percolation threshold.
We have shown that the thermal conductivity estimates
compare favourably with those obtained using a standard
RSRG approach.

In section 3 we presented a second approach based on
bounds for the conductivity in the limit of high volume
fraction and high contrast in the intrinsic conductivity of
both constituents. We used this to develop a recursion
relationship for the thermal conductivity which has an ex-
plicit dependency on the box counting dimension of the
structure. Here the supporting medium F' is a conductor
and the tremas are perfect insulators. Of course to use
this method with naturally occurring deposits we need to
model the geometry as an SSC. We have therefore given
details of how one can extract the length scale generator
0 and generation level n from a given geometry. Impor-
tantly, this approach is valid for objects which are fractal
over a finite range of length scales, which is a prerequisite
for the correct modelling of any natural fractal. As there
is a paucity of experimental information on explicit pore
structure in relation to thermal conductivity we have relied
on Monte Carlo simulation of realistic fouling geometries
to test this approach. For low generation levels we have
solved the relevant field equation using finite differences
and the results show good agreement with the model pre-
dictions. In general the RSRG methods underestimate the
thermal conductivity, although this approach has the ad-
vantage that there is no restriction on the relative intrinsic
conductivities of the two phases. The recursive approach
does perform better but at present this is restricted to
composites with a high ratio between the intrinsic conduc-
tivities of the constituents. The relaxation of this latter
point is the subject of our current investigations.
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NOMENCLATURE

All units have been non-dimensionalised.

Latin
dimpF' box counting dimension of the set F.
d number of tremas in a random deposit
structure.
E Sierpinski Carpet pre-fractal.
F (Shuffled) Sierpinski Carpet set.
g statistical morphological parameter.
N(9) number of squares of size §.
n fractal generation level.
p volume fraction or probability.
IP; renormalisation cluster configuration
probability.
w SSC grid dimension.
Greek

[ renormalisation tessellation.

0 fractal length scale generator.

€ relative errors in thermal conductivity
estimates.

¢ remaining surface area of random deposit.

v  renormalisation level.

1 pore size distribution in random deposit.

o thermal conductivity.

6  density of unitary phase B cells in phase A.
Subscripts

A phase A.

B phase B.

e effective conductivity.

1,...,VI renormalisation cluster type.
Superscripts

Random  mono-dispersed random two-phase

composite.

SSC shuffled Sierpinski carpet.

* at percolation threshold.

N equivalent volume fraction.

* estimated fractal generation parameters

in a random deposit structure.
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