Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Strain and composition distributions in wurtzite InGaN/GaN layers extracted from x-ray reciprocal space mapping

Pereira, S. and Correia, M.R. and Pereira, E. and O'Donnell, K.P. and Alves, E. and Sequeira, A.D. and Franco, N. and Watson, I.M. and Deatcher, C.J. (2002) Strain and composition distributions in wurtzite InGaN/GaN layers extracted from x-ray reciprocal space mapping. Applied Physics Letters, 80 (21). pp. 3913-3915. ISSN 0003-6951

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Strain and composition distributions within wurtzite InGaN/GaN layers are investigated by high-resolution reciprocal space mapping (RSM). We illustrate the potential of RSM to detect composition and strain gradients independently. This information is extracted from the elongation of broadened reciprocal lattice points (RLP) in asymmetric x-ray reflections. Three InxGa12xN/GaN (nominal x50.25) samples with layer thickness of 60, 120, and 240 nm, were grown in a commercial metal-organic chemical vapor deposition reactor. The RSMs around the (105) reflection show that the strain profile is nonuniform over depth in InGaN. The directions of ''pure'' strain relaxation in the reciprocal space, for a given In content (isocomposition lines), are calculated based on elastic theory. Comparison between these directions and measured distributions of the RLP shows that the relaxation process does not follow a specific isocomposition line. The In mole fraction (x) increases as the films relax. At the start of growth all the films have x;0.2 and are coherent to GaN. As they relax, x progressively increases towards the nominal value (0.25). Compositional gradients along the growth direction extracted from the RSM analysis are confirmed by complementary Rutherford backscattering measurements.