Rapid detection of pandemic influenza in the presence of seasonal influenza
Singh, Brajendra K and Savill, Nicholas J and Ferguson, Neil M and Robertson, Chris and Woolhouse, Mark EJ (2010) Rapid detection of pandemic influenza in the presence of seasonal influenza. BMC Public Health, 10. 726. ISSN 1471-2458 (https://doi.org/10.1186/1471-2458-10-726)
Preview |
Text.
Filename: Singh_etal_BMC_PC_2010_Rapid_detection_of_pandemic_influenza_in_the_presence_of_seasonal_influenza.pdf
Final Published Version License: Download (1MB)| Preview |
Abstract
Background: Key to the control of pandemic influenza are surveillance systems that raise alarms rapidly and sensitively. In addition, they must minimise false alarms during a normal influenza season. We develop a method that uses historical syndromic influenza data from the existing surveillance system 'SERVIS' (Scottish Enhanced Respiratory Virus Infection Surveillance) for influenza-like illness (ILI) in Scotland. Methods: We develop an algorithm based on the weekly case ratio (WCR) of reported ILI cases to generate an alarm for pandemic influenza. From the seasonal influenza data from 13 Scottish health boards, we estimate the joint probability distribution of the country-level WCR and the number of health boards showing synchronous increases in reported influenza cases over the previous week. Pandemic cases are sampled with various case reporting rates from simulated pandemic influenza infections and overlaid with seasonal SERVIS data from 2001 to 2007. Using this combined time series we test our method for speed of detection, sensitivity and specificity. Also, the 2008-09 SERVIS ILI cases are used for testing detection performances of the three methods with a real pandemic data. Results: We compare our method, based on our simulation study, to the moving-average Cumulative Sums (Mov-Avg Cusum) and ILI rate threshold methods and find it to be more sensitive and rapid. For 1% case reporting and detection specificity of 95%, our method is 100% sensitive and has median detection time (MDT) of 4 weeks while the Mov-Avg Cusum and ILI rate threshold methods are, respectively, 97% and 100% sensitive with MDT of 5 weeks. At 99% specificity, our method remains 100% sensitive with MDT of 5 weeks. Although the threshold method maintains its sensitivity of 100% with MDT of 5 weeks, sensitivity of Mov-Avg Cusum declines to 92% with increased MDT of 6 weeks. For a two-fold decrease in the case reporting rate (0.5%) and 99% specificity, the WCR and threshold methods, respectively, have MDT of 5 and 6 weeks with both having sensitivity close to 100% while the Mov-Avg Cusum method can only manage sensitivity of 77% with MDT of 6 weeks. However, the WCR and Mov-Avg Cusum methods outperform the ILI threshold method by 1 week in retrospective detection of the 2009 pandemic in Scotland. Conclusions: While computationally and statistically simple to implement, the WCR algorithm is capable of raising alarms, rapidly and sensitively, for influenza pandemics against a background of seasonal influenza. Although the algorithm was developed using the SERVIS data, it has the capacity to be used at other geographic scales and for different disease systems where buying some early extra time is critical.
-
-
Item type: Article ID code: 29151 Dates: DateEvent24 November 2010PublishedSubjects: Medicine > Public aspects of medicine > Public health. Hygiene. Preventive Medicine Department: Faculty of Science > Mathematics and Statistics Depositing user: Pure Administrator Date deposited: 07 Mar 2011 23:26 Last modified: 22 Sep 2024 00:43 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/29151