Picture of automobile manufacturing plant

Driving innovations in manufacturing: Open Access research from DMEM

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Design, Manufacture & Engineering Management (DMEM).

Centred on the vision of 'Delivering Total Engineering', DMEM is a centre for excellence in the processes, systems and technologies needed to support and enable engineering from concept to remanufacture. From user-centred design to sustainable design, from manufacturing operations to remanufacturing, from advanced materials research to systems engineering.

Explore Open Access research by DMEM...

Influence of glucose solubility and dissolution rate on the kinetics of lipase catalyzed synthesis of glucose laurate in 2- methyl 2-butanol

Flores, M.V. and Naraghi, K. and Engasser, J.M. and Halling, P.J. (2002) Influence of glucose solubility and dissolution rate on the kinetics of lipase catalyzed synthesis of glucose laurate in 2- methyl 2-butanol. Biotechnology and Bioengineering, 78 (7). pp. 814-820. ISSN 0006-3592

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The lipase catalyzed acylation of glucose by dodecanoic acid in 2-methyl 2-butanol was studied. The initial reaction rate was strongly dependent on the dissolved glucose concentration in the medium. Several methods were shown to increase dissolved glucose concentrations and initial reaction rates, namely, the use of solid beta-glucose, amorphous solid glucose, and supersaturated glucose solution. Supersaturated glucose solutions in 2-methyl 2-butanol showed a high stability even in the presence of solid crystalline glucose. During the reaction, the dissolved glucose concentration falls as the reaction proceeds, before recovering later as more of the excess solid dissolves. However, the ester synthesis rate continues to fall even after glucose concentration reaches its minimum, so glucose dissolution rate limitation is not responsible for the synthesis rate decline. Experiments with added molecular sieves show that the main reason is the accumulation of product water. In the presence of molecular sieves, 70% of glucose was converted to ester, independent of the initial soluble glucose in the medium.