Picture of rolled up £5 note

Open Access research that shapes economic thinking...

Strathprints makes available scholarly Open Access content by the Fraser of Allander Institute (FAI), a leading independent economic research unit focused on the Scottish economy and based within the Department of Economics. The FAI focuses on research exploring economics and its role within sustainable growth policy, fiscal analysis, energy and climate change, labour market trends, inclusive growth and wellbeing.

The open content by FAI made available by Strathprints also includes an archive of over 40 years of papers and commentaries published in the Fraser of Allander Economic Commentary, formerly known as the Quarterly Economic Commentary. Founded in 1975, "the Commentary" is the leading publication on the Scottish economy and offers authoritative and independent analysis of the key issues of the day.

Explore Open Access research by FAI or the Department of Economics - or read papers from the Commentary archive [1975-2006] and [2007-2018]. Or explore all of Strathclyde's Open Access research...

Tumor regression after systemic administration of a novel tumor-targeted gene delivery system carrying a therapeutic plasmid DNA

Koppu, Swati and Oh, Yew Jinn and Edrada-Ebel, R. and Blatchford, David R. and Tetley, L. and Tate, R. and Dufès, Christine (2010) Tumor regression after systemic administration of a novel tumor-targeted gene delivery system carrying a therapeutic plasmid DNA. Journal of Controlled Release, 143 (2). pp. 215-221. ISSN 0168-3659

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The possibility of using genes as medicines to treat cancer is limited by the lack of safe and efficacious delivery systems able to deliver therapeutic genes selectively to tumors by intravenous administration. We investigate if the conjugation of the polypropylenimine dendrimer to transferrin, whose receptors are overexpressed on numerous cancers, could result in a selective gene delivery to tumors after intravenous administration, leading to an increased therapeutic efficacy. The objectives of this study are to evaluate the targeting and therapeutic efficacies of a novel transferrin-bearing polypropylenimine dendrimer. The intravenous administration of transferrin-bearing polypropylenimine polyplex resulted in gene expression mainly in the tumors. Consequently, the intravenous administration of the delivery system complexed to a therapeutic DNA led to a rapid and sustained tumor regression over one month, with long-term survival of 100% of the animals (90% complete response, 10% partial response). The treatment was well tolerated by the animals, with no apparent signs of toxicity. Transferrin-bearing polypropylenimine may thus be a promising gene delivery system for cancer therapy.