Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Optical and structural properties of Eu-implanted InxAl1−xN

Roqan, I.S. and O'Donnell, K.P. and Martin, R.W. and Trager-Cowan, C. and Matias, V. and Vantomme, A. and Lorenz, K. and Alves, E. and Watson, I.M. (2009) Optical and structural properties of Eu-implanted InxAl1−xN. Journal of Applied Physics, 106 (8). ISSN 0021-8979

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Off-axis implantation of 80 keV Eu ions into epitaxial c-plane InAlN/GaN bilayers confines rare-earth (RE) doping largely to the InAlN layer. Rutherford backscattering spectrometry and x-ray diffraction show good correlations between the Eu3+ emission linewidth and key structural parameters of InxAl1−xN films on GaN in the composition range near lattice matching (x ∼ 0.17). In contrast to GaN:Eu, selectively excited photoluminescence (PL) and PL excitation spectra reveal the presence of a single dominant optical center in InAlN. Eu3+ emission from In0.13Al0.87N:Eu also shows significantly less thermal quenching than GaN:Eu. InAlN films are therefore superior to GaN for RE optical doping.