Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

SERRS labelled beads for multiplex detection

McCabe, A.F. and Eliasson, C. and Prasath, R.A. and Hernandez-Santana, A. and Stevenson, L. and Apple, I. and Cormack, P.A.G. and Graham, D. and Smith, W.E. and Corish, P. and Lipscomb, S.J. and Holland, E.R. and Prince, P.D. (2006) SERRS labelled beads for multiplex detection. Faraday Discussions, 2006 (132). pp. 303-306. ISSN 1359-6640

Full text not available in this repository. Request a copy from the Strathclyde author


Beads labelled using surface enhanced resonance Raman scattering (SERRS) are highly sensitive and specific tags, with potential applications in biological assays, including molecular diagnostics. The beads consist of a nucleus containing dye labelled silver-nanoparticle aggregates surrounded by a polymer core. The nuclei generate strong SERRS signals. To illustrate the coding advantage created by the sharp, molecularly specific SERRS signals, four specially designed SERRS dyes have been used as labels and three of these have been combined in a multiplex analysis. These dyes use specific groups such as benzotriazole and 8-hydroxyquinoline to improve binding to the surface of the silver particles. The aggregation state of the particles is held constant by the polymer core, this nucleus also contains many dye labels, yielding a very high Raman scattering intensity for each bead. To functionalise these beads for use in biological assays an outer polymer shell can be added, which allows the attachment of oligonucleotide probes. Oligonucleotide modified beads can then be used for detection of specific oligonucleotide targets. The specificity of SERRS will allow for the detection of multiple targets within a single assay.