Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Identification and characterization of active and inactive species for surface-enhanced resonance Raman scattering

Khan, I. and Cunningham, D. and Graham, D. and McComb, D.W. and Smith, W.E. (2005) Identification and characterization of active and inactive species for surface-enhanced resonance Raman scattering. Journal of Physical Chemistry B, 109 (8). pp. 3454-3459. ISSN 1520-6106

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The surface-enhanced resonance Raman scattering (SERRS) activity of a statistically significant number of silver nanoparticles has been studied using a correlated SERRS mapping and transmission electron microscopy (TEM) method. TEM allowed the nature of each entity to be directly identified, and the SERRS activity was obtained from the corresponding SERRS map. Particles in various states of aggregation were analyzed to establish relative activities. It was established that SERRS activity is dependent on the specific batch of colloid tested. By averaging different colloid batches, it was shown that increasing SERRS activity is observed with increasing numbers of particles in the aggregates. By reducing the surface coverage of the particles to the extent that single moieties could be examined optically, the ratio of the relative activities of single particles, dimers, trimers, and larger aggregates was estimated. High-resolution TEM images of a number of active and inactive particles are reported. However, no clear correlation between microstructure and SERRS activity was observed.