Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

A modelling study of a non-concerted hydrolytic cycloaddition reaction by the catalytic antibody H11

Clark, R.L. and Johnston, B.F. and Suckling, C.J. and Mackay, S.P. (2006) A modelling study of a non-concerted hydrolytic cycloaddition reaction by the catalytic antibody H11. Bioorganic and Medicinal Chemistry Letters, 14. pp. 2674-2683. ISSN 0960-894X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

H11 is the first antibody reported to have dual activity as a non-concerted, Diels-Alderase and hydrolytic catalyst. It was previously shown to catalyse the cycloaddition of acetoxybutadiene 1a to N-alkyl maleimides 2 to afford hydroxy-substituted bicyclic adducts 3 with a 30% ee of a major isomer. To better understand this mechanism and the partial stereospecificity, a homology model of H11 was constructed and used in docking studies to evaluate potential antibody-ligand complexes. The model suggested the hydrolytic nature of H11 was due to Glu 95H acting as a catalytic base, and evaluation of the shape complementarity of the proposed antibody-ligand complexes confirmed at a semi-quantitative level the observation that the major enantiomer is produced in a 30% ee.