Picture offshore wind farm

Open Access: World leading research into plasma physics...

Strathprints makes available scholarly Open Access content by researchers in the Department of Physics, including those researching plasma physics.

Plasma physics explores the '4th' state of matter known as 'plasma'. Profound new insights are being made by Strathclyde researchers in their attempts to better understand plasma, its behaviour and applications. Areas of focus include plasma wave propagation, non-linear wave interactions in the ionosphere, magnetospheric cyclotron instabilities, the parametric instabilities in plasmas, and much more.

Based on the REF 2014 GPA Scores, Times Higher Education ranked Strathclyde as number one in the UK for physics research.

Explore Open Access plasma physics research and of the Department of Physics more generally. Or explore all of Strathclyde's Open Access research...

Determination of rifampicin in human plasma and blood spots by high performance liquid chromatography with uV detection: a potential method for therapeutic drug monitoring

Allanson, A.L. and Cotton, M.M. and Tettey, J.N.A. and Boyter, A.C. (2007) Determination of rifampicin in human plasma and blood spots by high performance liquid chromatography with uV detection: a potential method for therapeutic drug monitoring. Journal of Pharmaceutical and Biomedical Analysis, 44 (4). pp. 963-969. ISSN 0731-7085

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A high performance liquid chromatography method has been developed that allows quantification of concentrations of rifampicin in human plasma and blood spots. Rifampicin and papaverine hydrochloride (internal standard) were extracted from plasma using a Strata-X-CW extraction cartridge. These analytes were also extracted into acetonitrile from blood spots dried onto a specimen collection card. The recovery of rifampicin from plasma and blood spots was 84.5% and 65.0%, respectively. Separation was achieved by HPLC on a Kromasil C18 column with a mobile phase composed of ammonium acetate (20 mM, pH 4.0) and acetonitrile, delivered on a gradient programme. Optimum detection was at 334 nm. The assay was linear over the concentration range of 0.5–20 μg/ml. The limit of quantification was 0.5 μg/ml in plasma; 1.5 μg/ml in blood spots. Both intraday and interday precision data showed reproducibility (R.S.D. ≤ 8.0, n = 9). Stability studies showed rifampicin was stable in plasma for up to 9 h after thawing; the samples were also stable for up to 9 h after preparation. Five patient samples were analysed using the methods described. A correlation was found between the concentrations of RIF in plasma and blood spots (r2 = 0.92). This method is proposed as a means of therapeutic drug monitoring of rifampicin in patients with tuberculosis.