# Browse by Journal or other publication

**10**.

## 2021

Pettigrew, Joseph S. and Mulholland, Anthony J. and Tant, Katherine M. M.
(2021)
*Towards a combined perfectly matching layer and infinite element formulation for unbounded elastic wave problems.*
Mathematics and Mechanics of Solids.
pp. 1-19.
ISSN 1081-2865

Yang, Zhenghao and Oterkus, Erkan and Oterkus, Selda
(2021)
*Peridynamic modelling of higher order functionally graded plates.*
Mathematics and Mechanics of Solids.
ISSN 1081-2865

Galadima, Yakubu Kasimu and Oterkus, Erkan and Oterkus, Selda
(2021)
*Model order reduction of linear peridynamic systems using static condensation.*
Mathematics and Mechanics of Solids, 26 (4).
pp. 552-569.
ISSN 1081-2865

## 2020

Yang, Zhenghao and Oterkus, Erkan and Oterkus, Selda
(2020)
*A state-based peridynamic formulation for functionally graded Kirchhoff plates.*
Mathematics and Mechanics of Solids.
ISSN 1081-2865

Fang, Lidong and Majumdar, Apala and Zhang, Lei
(2020)
*Surface, size and topological effects for some nematic equilibria on rectangular domains.*
Mathematics and Mechanics of Solids, 25 (5).
pp. 1101-1123.
ISSN 1081-2865

## 2019

Yang, Zhenghao and Vazic, Bozo and Diyaroglu, Cagan and Oterkus, Erkan and Oterkus, Selda
(2019)
*A Kirchhoff plate formulation in a state-based peridynamic framework.*
Mathematics and Mechanics of Solids.
ISSN 1081-2865

## 2018

Javili, Ali and Morasata, Rico and Oterkus, Erkan and Oterkus, Selda
(2018)
*Peridynamics review.*
Mathematics and Mechanics of Solids.
ISSN 1081-2865
(In Press)

## 2017

Diyaroglu, Cagan and Oterkus, Erkan and Oterkus, Selda
(2017)
*An Euler-Bernoulli beam formulation in ordinary state-based peridynamic framework.*
Mathematics and Mechanics of Solids.
ISSN 1081-2865

## 2001

Chudinovich, I. and Constanda, C.
(2001)
*Combined displacement-traction boundary value problems for elastic plates.*
Mathematics and Mechanics of Solids, 6 (2).
pp. 175-191.
ISSN 1081-2865

Chudinovich, I. and Constanda, C.
(2001)
*The Solvability of boundary integral equations for the Dirichlet and Neumann problems in the theory of thin elastic plates.*
Mathematics and Mechanics of Solids, 6 (3).
pp. 269-279.
ISSN 1081-2865