Temperature gradient effects on moisture transport in porous building materials
Baker, P.H. and Galbraith, G.H. and McLean, R.C. (2009) Temperature gradient effects on moisture transport in porous building materials. Building Services Engineering Research and Technology, 30 (1). pp. 37-48. ISSN 0143-6244 (http://dx.doi.org/10.1177/0143624408099234)
Full text not available in this repository.Request a copyAbstract
Whilst considerable research has been carried out on the process of moisture transmission through porous building materials under a concentration gradient with isothermal conditions, limited experimental data are available on the influence of temperature gradients on moisture transfer rates. Such thermodiffusion can be predicted from irreversible thermodynamics, however, its significance to concentration-driven transfer in materials has not been definitively established. Models for the prediction of moisture movement in building structures generally neglect such effects, and rely on moisture transport properties based on isothermal measurements. This paper describes an investigation to determine the significance of non-isothermal effects on the total moisture transfer through building materials. The investigation concluded that the vapour pressure gradient is the critical driving potential for moisture transfer, whilst thermodiffusion is not significant. Practical application: Building professionals can be confident that the use of vapour permeabilities of building materials measured under isothermal conditions are satisfactory for the prediction of moisture transport through building envelopes under temperature gradients: no correction for thermodiffusion effects is necessary.
-
-
Item type: Article ID code: 9385 Dates: DateEvent2009PublishedSubjects: Technology > Mechanical engineering and machinery
Technology > Building constructionDepartment: Faculty of Engineering > Mechanical and Aerospace Engineering Depositing user: Strathprints Administrator Date deposited: 17 May 2010 14:13 Last modified: 15 Nov 2024 13:18 URI: https://strathprints.strath.ac.uk/id/eprint/9385