Energy-Efficient TDMA-NOMA for RIS-Assisted Ultra-Dense VLC Networks
Ihsan, Asim and Asif, Muhammad and Khan, Wali Ullah and Osahon, Isaac N. O. and Rajbhandari, Sujan (2024) Energy-Efficient TDMA-NOMA for RIS-Assisted Ultra-Dense VLC Networks. IEEE Transactions on Green Communications and Networking. ISSN 2473-2400 (https://doi.org/10.1109/tgcn.2024.3511114)
Preview |
Text.
Filename: Ihsan-etal-2024-Energy-Efficient-TDMA-NOMA-for-RIS-Assisted-Ultra-Dense-VLC-Networks.pdf
Accepted Author Manuscript License: Download (5MB)| Preview |
Abstract
This paper proposes an energy-efficient optimization technique for downlink indoor visible light communication (VLC) systems using hybrid non-orthogonal multiple access (NOMA) and reconfigurable intelligent surfaces (RIS). The approach considers a hybrid time division multiple access-NOMA (TDMA-NOMA) to provide massive connectivity to multi-clusters. Clusters of users are formed using NOMA while TDMA is used to allocate a specific time slot within a communication frame. The proposed technique optimizes the precoding at the multi-LED transmitter, RIS tuning parameters, and time-slot allocation parameters for each cluster to maximize the system’s energy efficiency (EE). The EE optimization problem is solved through the block coordinate descent (BCD) framework, which splits the optimization problem into two blocks. An alternating optimization (AO) framework is used in the first block to optimize the transmit precoding through conic quadratic programming (CQP) and RIS tuning parameters through a semidefinite programming (SDP) technique based on the surrogate optimization method. The second block allocates energy-efficient time-slot for each cluster through linear programming (LP) approach to further improve the EE of the system. The simulation results indicate that the proposed BCD framework achieves fast convergence and excellent performance in terms of the EE of the system while maintaining low computational complexity.
ORCID iDs
Ihsan, Asim, Asif, Muhammad, Khan, Wali Ullah, Osahon, Isaac N. O. and Rajbhandari, Sujan ORCID: https://orcid.org/0000-0001-8742-118X;-
-
Item type: Article ID code: 91586 Dates: DateEvent4 December 2024Published4 December 2024Published Online1 December 2024AcceptedNotes: For the purposes of open access, a CC BY 4.0 licence has been applied to the accepted manuscript. Subjects: Technology > Electrical engineering. Electronics Nuclear engineering > Electrical apparatus and materials > Electric networks Department: Faculty of Engineering > Electronic and Electrical Engineering
Faculty of Science > Physics > Institute of PhotonicsDepositing user: Pure Administrator Date deposited: 16 Dec 2024 10:36 Last modified: 18 Jan 2025 01:53 URI: https://strathprints.strath.ac.uk/id/eprint/91586