Development of a digital twin for the prediction and control of supersaturation during batch cooling crystallization

Leeming, Ryan and Mahmud, Tariq and Roberts, Kevin J. and George, Neil and Webb, Jennifer and Simone, Elena and Brown, Cameron J. (2023) Development of a digital twin for the prediction and control of supersaturation during batch cooling crystallization. Industrial and Engineering Chemistry Research, 62 (28). pp. 11067-11081. ISSN 0888-5885 (https://doi.org/10.1021/acs.iecr.3c00371)

[thumbnail of Leeming-etal-IECR-2023-Development-of-a-digital-twin-for-the-prediction-and-control-of-supersaturation]
Preview
Text. Filename: Leeming_etal_IECR_2023_Development_of_a_digital_twin_for_the_prediction_and_control_of_supersaturation.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (6MB)| Preview

Abstract

Fine chemicals produced via batch crystallization with properties dependent on the crystal size distribution require precise control of supersaturation, which drives the evolution of crystal size over time. Model predictive control (MPC) of supersaturation using a mechanistic model to represent the behavior of a crystallization process requires less experimental time and resources compared with fully empirical model-based control methods. Experimental characterization of the hexamine–ethanol crystallization system was performed in order to collect the parameters required to build a one-dimensional (1D) population balance model (PBM) in gPROMS FormulatedProducts software (Siemens-PSE Ltd.). Analysis of the metastable zone width (MSZW) and a series of seeded batch cooling crystallizations informed the suitable process conditions selected for supersaturation control experiments. The gPROMS model was integrated with the control software PharmaMV (Perceptive Engineering Ltd.) to create a digital twin of the crystallizer. Simulated batch crystallizations were used to train two statistical MPC blocks, allowing for in silico supersaturation control simulations to develop an effective control strategy. In the supersaturation set-point range of 0.012–0.036, the digital twin displayed excellent performance that would require minimal controller tuning to steady out any instabilities. The MPC strategy was implemented on a physical 500 mL crystallizer, with the simulated solution concentration replaced by in situ measurements from calibrated attenuated total reflection–Fourier transform infrared (ATR-FTIR) spectroscopy. Physical supersaturation control performance was slightly more unstable than the in silico tests, which is consistent with expected disturbances to the heat transfer, which were not specifically modeled in simulations. Overall, the level of supersaturation control in a real crystallizer was found to be accurate and precise enough to consider future adaptations to the MPC strategy for more advanced control objectives, such as the crystal size.

ORCID iDs

Leeming, Ryan, Mahmud, Tariq, Roberts, Kevin J., George, Neil, Webb, Jennifer, Simone, Elena and Brown, Cameron J. ORCID logoORCID: https://orcid.org/0000-0001-7091-1721;