Platinum-decorated tin oxide and niobium-doped tin oxide pefc electrocatalysts : oxygen reduction reaction activity

Tsukatsune, T. and Takabatake, Y. and Noda, Z. and Daio, Takeshi and Zaitsu, A. and Lyth, S. M. and Hayashi, A. and Sasaki, K. (2014) Platinum-decorated tin oxide and niobium-doped tin oxide pefc electrocatalysts : oxygen reduction reaction activity. Journal of the Electrochemical Society, 161 (12). F1208-F1213. ISSN 0013-4651 (https://doi.org/10.1149/2.0431412jes)

[thumbnail of Tsukatsune-etal-JES-2014-Platinum-decorated-tin-oxide-and-niobium-doped]
Preview
Text. Filename: Tsukatsune_etal_JES_2014_Platinum_decorated_tin_oxide_and_niobium_doped.pdf
Final Published Version
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (896kB)| Preview

Abstract

Using tin oxide (SnO2) and niobium-doped tin oxide (Nb-SnO2) as alternative electrocatalyst support materials can effectively solve the issue of carbon corrosion in polymer electrolyte fuel cell (PEFC) cathodes. Here, we systematically explore the effect of support surface area, Pt loading, and Pt nanoparticle size on the electrochemistry of these carbon-free electrocatalysts. Reducing the Pt loading leads to an increase in electrochemical surface area, but the specific activity decreases as previously observed in conventional carbon based electrocatalysts. Removing residual chlorine impurities by replacing the H2PtCl6 nanoparticle precursor with Pt(acac)2 increases the specific activity. Niobium-doping of the SnO2 support also results in an increase in specific activity, due to the increased electronic conductivity. Consequently, the oxygen reduction reaction activity of optimized Pt-decorated Nb-SnO2 is approaching to that of Pt-decorated carbon black, the current state-of-the-art PEFC electrocatalyst.

ORCID iDs

Tsukatsune, T., Takabatake, Y., Noda, Z., Daio, Takeshi, Zaitsu, A., Lyth, S. M. ORCID logoORCID: https://orcid.org/0000-0001-9563-867X, Hayashi, A. and Sasaki, K.;