New insights into hydrogen uptake on porous carbon materials via explainable machine learning
Maulana Kusdhany, Muhammad Irfan and Lyth, Stephen Matthew (2021) New insights into hydrogen uptake on porous carbon materials via explainable machine learning. Carbon, 179. pp. 190-201. ISSN 0008-6223 (https://doi.org/10.1016/j.carbon.2021.04.036)
Preview |
Text.
Filename: Kusdhany_Lyth_Carbon_2021_New_insights_into_hydrogen_uptake.pdf
Final Published Version License: Download (2MB)| Preview |
Abstract
To understand hydrogen uptake in porous carbon materials, we developed machine learning models to predict excess uptake at 77 K based on the textural and chemical properties of carbon, using a dataset containing 68 different samples and 1745 data points. Random forest is selected due to its high performance (R2 > 0.9), and analysis is performed using Shapley Additive Explanations (SHAP). It is found that pressure and Brunauer-Emmett-Teller (BET) surface area are the two strongest predictors of excess hydrogen uptake. Surprisingly, this is followed by a positive correlation with oxygen content, contributing up to ∼0.6 wt% additional hydrogen uptake, contradicting the conclusions of previous studies. Finally, pore volume has the smallest effect. The pore size distribution is also found to be important, since ultramicropores (dp < 0.7 nm) are found to be more positively correlated with excess uptake than micropores (dp < 2 nm). However, this effect is quite small compared to the role of BET surface area and total pore volume. The novel approach taken here can provide important insights in the rational design of carbon materials for hydrogen storage applications.
ORCID iDs
Maulana Kusdhany, Muhammad Irfan and Lyth, Stephen Matthew ORCID: https://orcid.org/0000-0001-9563-867X;-
-
Item type: Article ID code: 85305 Dates: DateEvent31 July 2021Published20 April 2021Published Online9 April 2021AcceptedSubjects: Technology > Chemical engineering Department: Faculty of Engineering > Chemical and Process Engineering Depositing user: Pure Administrator Date deposited: 27 Apr 2023 11:24 Last modified: 21 Nov 2024 18:07 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/85305