Probabilistic forecasting informed failure prognostics framework for improved RUL prediction under uncertainty : a transformer case study
Aizpurua, J.I. and Stewart, B.G. and McArthur, S.D.J. and Penalba, M. and Barrenetxea, M. and Muxika, E. and Ringwood, J.V. (2022) Probabilistic forecasting informed failure prognostics framework for improved RUL prediction under uncertainty : a transformer case study. Reliability Engineering and System Safety, 226. 108676. ISSN 0951-8320 (https://doi.org/10.1016/j.ress.2022.108676)
Preview |
Text.
Filename: Aizpurua_etal_RESS_2022_Probabilistic_forecasting_informed_failure_prognostics_framework_for_improved_RUL_prediction.pdf
Final Published Version License: Download (2MB)| Preview |
Abstract
The energy transition towards resilient and sustainable power plants requires moving from periodic health assessment to condition-based lifetime planning, which in turn, creates new challenges and opportunities for health estimation and prediction. Probabilistic forecasting models are being widely employed to predict the likely evolution of power grid parameters, such as weather prediction models and probabilistic load forecasting models, that precisely impact on the health state of power and energy components. These models synthesize forecasting knowledge and associated uncertainty information, and their integration within asset management practice would improve lifetime estimation under uncertainty through uncertainty-aware probabilistic predictions. Accordingly, this paper presents a probabilistic prognostics method for lifetime planning under uncertainty integrating data-driven probabilistic forecasting models with expert-knowledge based Bayesian filtering methods. The proposed concepts are applied and validated with power transformers operated in two different power generation systems and obtained results confirm that the proposed probabilistic transformer lifetime estimate aids in the decision-making process with informative lifetime distributions and associated confidence intervals.
ORCID iDs
Aizpurua, J.I., Stewart, B.G., McArthur, S.D.J. ORCID: https://orcid.org/0000-0003-1312-8874, Penalba, M., Barrenetxea, M., Muxika, E. and Ringwood, J.V.;-
-
Item type: Article ID code: 81355 Dates: DateEvent1 October 2022Published17 June 2022Published Online14 June 2022AcceptedSubjects: Technology > Electrical engineering. Electronics Nuclear engineering Department: Faculty of Engineering > Electronic and Electrical Engineering
Faculty of EngineeringDepositing user: Pure Administrator Date deposited: 06 Jul 2022 10:13 Last modified: 21 Nov 2024 14:17 URI: https://strathprints.strath.ac.uk/id/eprint/81355