Polymersomes-mediated delivery of CSF1R inhibitor to tumor associated macrophages promotes M2 to M1-like macrophage repolarization
Rodriguez-Perdigon, Manuel and Jimaja, Sètuhn and Haen, Laetitia and Bruns, Nico and Rothen-Rutishauser, Barbara and Rüegg, Curzio (2022) Polymersomes-mediated delivery of CSF1R inhibitor to tumor associated macrophages promotes M2 to M1-like macrophage repolarization. Macromolecular Bioscience, 22 (8). 2200168. ISSN 1616-5187 (https://doi.org/10.1002/mabi.202200168)
Preview |
Text.
Filename: Rodriguez_Perdigon_etal_MB_2022_Polymersomes_mediated_delivery_of_CSF1R_inhibitor_to_tumor_associated_macrophages.pdf
Final Published Version License: Download (2MB)| Preview |
Abstract
The crosstalk between cancer cells and tumor associated macrophages (TAMs) within the tumor environment modulates tumor progression at all stages of cancer disease. TAMs are predominantly M2-like polarized macrophages with tumor-promoting activities. Nonetheless, they can be repolarized to tumoricidal M1-like macrophages through macrophage colony stimulating factor 1 receptor inhibition (CSF1Ri). CSF1Ri is being explored as multifaced therapeutic approach to suppress TAMs tumor-promoting functions and reduce cancer cell aggressiveness and viability. However, treatment with CSF1Ri results in significant TAMs death, thereby extinguishing the possibility of generating tumoricidal M1-like macrophages. Immunotherapy has not only improved overall patient's survival in some cancer types, but also caused frequent off-target toxicity. Approaches to balance efficacy versus toxicity are needed. Herein, a CSF1Ri-loaded polymersomes (PMs) based delivery platform is developed to promote M2-like macrophage repolarization. When testing in vitro on primary human monocyte-derived macrophages (MDMs), CSF1Ri-loaded PMs are preferentially taken up by M2-like macrophages and enhance M2 to M1-like macrophage repolarization while minimizing cytotoxicity in comparison to the free drug. When testing in a MDMs-MDA-MB-231 breast cancer cell coculture model, CSF1Ri-loaded PMs further retain their M2 to M1-like macrophages polarization capacity. This CSF1Ri-loaded PM-based platform system represents a promising tool for macrophage-based immunotherapy approaches.
ORCID iDs
Rodriguez-Perdigon, Manuel, Jimaja, Sètuhn, Haen, Laetitia, Bruns, Nico ORCID: https://orcid.org/0000-0001-6199-9995, Rothen-Rutishauser, Barbara and Rüegg, Curzio;-
-
Item type: Article ID code: 81096 Dates: DateEvent31 August 2022Published27 May 2022Published Online27 May 2022Accepted28 April 2022SubmittedSubjects: Technology > Chemical technology
Medicine > Internal medicine > Neoplasms. Tumors. Oncology (including Cancer)Department: Faculty of Science > Pure and Applied Chemistry Depositing user: Pure Administrator Date deposited: 14 Jun 2022 11:22 Last modified: 20 Jan 2025 02:20 URI: https://strathprints.strath.ac.uk/id/eprint/81096