Application of a dynamic thermoelastic coupled model for an aerospace aluminium composite panel

Ganilova, Olga A. and Cartmell, Matthew P. and Kiley, Andrew (2022) Application of a dynamic thermoelastic coupled model for an aerospace aluminium composite panel. Composite Structures, 288. 115423. ISSN 0263-8223 (https://doi.org/10.1016/j.compstruct.2022.115423)

[thumbnail of Ganilova-etal-CS-2022-Application-of-a-dynamic-thermoelastic-coupled-model-for-an-aerospace-aluminium-composite-panel]
Preview
Text. Filename: Ganilova_etal_CS_2022_Application_of_a_dynamic_thermoelastic_coupled_model_for_an_aerospace_aluminium_composite_panel.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB)| Preview

Abstract

An analytical-numerical coupled model has been derived to predict the effects of dynamic thermo-mechanical loading on aluminium composite panels specifically in the form of metallic skin sandwich structures, for the purposes of enhanced design of spacecraft structures where the environmental conditions comprise combined mechanical and thermal loading. The mechanical loading can arise as a consequence of localised structural dynamics, and the thermal loading is attributable principally to the effects of solar irradiation and eclipse during a satellite’s orbit, and together they have the potential to influence de-point adversely, in particular. On this basis a combined physics model is required to deal with the generalised thermoelastic problem and this paper reports on the theoretical work done to achieve that. The research has considered the literature in detail and a refined model has been proposed for an aerospace application which results in an analytical-numerical solution for the thermoelastic problem in aluminium composite panels. The model is explored for a panel under a range of centrally located static mechanical loads, in conjunction with thermal loading provided in the form of various controlled and elevated environmental temperature functions, all for prescribed physical boundary conditions. Both forms of loading are shown to influence the displacement of the panel significantly, thereby confirming the importance of a combined physics model for analysing structures in this context.