A U-Net based multi-scale feature extraction for liver tumour segmentation in CT images
Gong, Ming and Soraghan, John and Di Caterina, Gaetano and Grose, Derek (2021) A U-Net based multi-scale feature extraction for liver tumour segmentation in CT images. In: 10th International Conference on Communications, Signal Processing, and Systems, 2021-08-21 - 2021-08-22.
Preview |
Text.
Filename: Gong_etal_CSPS2021_A_U_Net_based_multi_scale_feature_extraction_for_liver_tumour.pdf
Accepted Author Manuscript Download (846kB)| Preview |
Abstract
A new method for automatic liver tumour segmentation from computed tomography (CT) scans based on deep neural network is presented. Two cascaded deep convolu-tional neural networks are used to segment the CT image of the abdominal cavity. The first U-net is used for coarse segmentation to obtain the approximate position of the liver and tumour. Using this as a prediction the original image is cropped to reduce its size in order to increase the segmentation accuracy. The second modified U-net is employed for accurate segmentation of the actual liver tumours. Residual modules and dense connections are added to U-net to help the network train faster while pro-ducing more accurate results. In addition, multi-dimensional information fusion is introduced to make the network more comprehensive in restoring information. The Liver Tumour Segmentation (LiTs) dataset is used to evaluate the relative segmenta-tion performance obtaining an average dice score of 0.665 based our method.
ORCID iDs
Gong, Ming, Soraghan, John ORCID: https://orcid.org/0000-0003-4418-7391, Di Caterina, Gaetano ORCID: https://orcid.org/0000-0002-7256-0897 and Grose, Derek;-
-
Item type: Conference or Workshop Item(Paper) ID code: 77483 Dates: DateEvent22 August 2021Published20 July 2020AcceptedSubjects: Technology > Electrical engineering. Electronics Nuclear engineering Department: Faculty of Engineering > Electronic and Electrical Engineering
Technology and Innovation Centre > Sensors and Asset ManagementDepositing user: Pure Administrator Date deposited: 19 Aug 2021 12:16 Last modified: 11 Nov 2024 17:04 URI: https://strathprints.strath.ac.uk/id/eprint/77483