A comparison of the performance of 2D and 3D convolutional neural networks for subsea survey video classification
Stamoulakatos, Anastasios and Cardona, Javier and Michie, Craig and Andonovic, Ivan and Lazaridis, Pavlos and Bellekens, Xavier and Atkinson, Robert and Hossain, Md Moinul and Tachtatzis, Christos (2021) A comparison of the performance of 2D and 3D convolutional neural networks for subsea survey video classification. In: Oceans 2021, 2021-09-20 - 2021-09-23, San Diego.
Preview |
Text.
Filename: Stamoulakatos_etal_2021_A_comparison_performance_2D_3D_convolutional_neural_networks_subsea_survey_video_classification.pdf
Accepted Author Manuscript Download (2MB)| Preview |
Abstract
Utilising deep learning image classification to auto-matically annotate subsea pipeline video surveys can facilitate the tedious and labour-intensive process, resulting in significant time and cost savings. However, the classification of events on subsea survey videos (frame sequences) by models trained on individual frames have been proven to vary, leading to inaccuracies. The paper extends previous work on the automatic annotation of individual subsea survey frames by comparing the performance of 2D and 3D Convolutional Neural Networks (CNNs) in classifying frame sequences. The study explores the classification of burial, exposure, free span, field joint, and anode events. Sampling and regularization techniques are designed to address the challenges of an underwater inspection video dataset owing to the environment. Results show that a 2D CNN with rolling average can outperform a 3D CNN, achieving an Exact Match Ratio of 85% and F1-Score of 90%, whilst being more computationally efficient.
ORCID iDs
Stamoulakatos, Anastasios ORCID: https://orcid.org/0000-0002-8279-9973, Cardona, Javier ORCID: https://orcid.org/0000-0002-9284-1899, Michie, Craig ORCID: https://orcid.org/0000-0001-5132-4572, Andonovic, Ivan ORCID: https://orcid.org/0000-0001-9093-5245, Lazaridis, Pavlos, Bellekens, Xavier ORCID: https://orcid.org/0000-0003-1849-5788, Atkinson, Robert ORCID: https://orcid.org/0000-0002-6206-2229, Hossain, Md Moinul and Tachtatzis, Christos ORCID: https://orcid.org/0000-0001-9150-6805;-
-
Item type: Conference or Workshop Item(Paper) ID code: 77303 Dates: DateEvent23 September 2021Published31 July 2021AcceptedSubjects: Technology > Electrical engineering. Electronics Nuclear engineering Department: Faculty of Engineering > Electronic and Electrical Engineering
Strategic Research Themes > Measurement Science and Enabling TechnologiesDepositing user: Pure Administrator Date deposited: 05 Aug 2021 08:50 Last modified: 13 Jan 2025 02:21 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/77303