Physical-layer security in multiuser visible light communication networks
Yin, Liang and Haas, Harald (2018) Physical-layer security in multiuser visible light communication networks. IEEE Journal on Selected Areas in Communications, 36 (1). pp. 162-174. ISSN 0733-8716 (https://doi.org/10.1109/JSAC.2017.2774429)
Preview |
Text.
Filename: Yin_Haas_IEEE_JOSAC_2018_Physical_layer_security_in_multiuser_visible_light_communication.pdf
Accepted Author Manuscript Download (1MB)| Preview |
Abstract
In this paper, we study the physical-layer security in a 3-D multiuser visible light communication (VLC) network. The locations of access points (APs) and mobile users are modeled as two 2-D, independent and homogeneous Poisson point processes at distinct heights. Using mathematical tools from stochastic geometry, we provide a new analytical framework to characterize the secrecy performance in multiuser VLC networks. Closed-form results for the outage probability and the ergodic secrecy rate are derived for networks without AP cooperation. Considering the cooperation among APs, we give tight lower and upper bounds on the secrecy outage probability and the ergodic secrecy rate. To further enhance the secrecy performance at the legitimate user, a disk-shaped secrecy protected zone is implemented in the vicinity of the transmit AP. Based on the obtained results, it is shown that cooperating neighboring APs in a multiuser VLC network can bring performance gains on the secrecy rate, but only to a limited extent. We also show that building an eavesdropper-free protected zone around the AP significantly improves the secrecy performance of legitimate users, which appears to be a promising solution for the design of multiuser VLC networks with high security requirements.
-
-
Item type: Article ID code: 75198 Dates: DateEvent31 January 2018Published27 November 2017Published Online16 September 2017AcceptedNotes: © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Subjects: Technology > Electrical engineering. Electronics Nuclear engineering Department: Faculty of Engineering > Electronic and Electrical Engineering Depositing user: Pure Administrator Date deposited: 27 Jan 2021 17:03 Last modified: 18 Dec 2024 15:32 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/75198