Temporal convolutional neural networks for radar micro-Doppler based gait recognition

Addabbo, Pia and Bernardi, Mario Luca and Biondi, Filippo and Cimitile, Marta and Clemente, Carmine and Orlando, Danilo (2021) Temporal convolutional neural networks for radar micro-Doppler based gait recognition. Sensors, 21 (2). 381. ISSN 1424-8220 (https://doi.org/10.3390/s21020381)

[thumbnail of Addabbo-etal-Sensors-2021-Temporal-convolutional-neural-networks]
Preview
Text. Filename: Addabbo_etal_Sensors_2021_Temporal_convolutional_neural_networks.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (2MB)| Preview

Abstract

The capability of sensors to identify individuals in a specific scenario is a topic of high relevance for sensitive sectors such as public security. A traditional approach involves cameras; however, camera-based surveillance systems lack discretion and have high computational and storing requirements in order to perform human identification. Moreover, they are strongly influenced by external factors (e.g., light and weather). This paper proposes an approach based on a temporal convolutional deep neural networks classifier applied to radar micro-Doppler signatures in order to identify individuals. Both sensor and processing requirements ensure a low size weight and power profile, enabling large scale deployment of discrete human identification systems. The proposed approach is assessed on real data concerning 106 individuals. The results show good accuracy of the classifier (the best obtained accuracy is 0.89 with an F1-score of 0.885) and improved performance when compared to other standard approaches.

ORCID iDs

Addabbo, Pia, Bernardi, Mario Luca, Biondi, Filippo, Cimitile, Marta, Clemente, Carmine ORCID logoORCID: https://orcid.org/0000-0002-6665-693X and Orlando, Danilo;