Machine-learning tool for human factors evaluation - application to lion air Boeing 737-8 max accident
Morais, C. and Yung, K. and Patelli, E.; Papadrakakis, M. and Papadopoulos, V. and Stefanou, G., eds. (2019) Machine-learning tool for human factors evaluation - application to lion air Boeing 737-8 max accident. In: Proceedings of the 3rd International Conference on Uncertainty Quantification in Computational Sciences and Engineering, UNCECOMP 2019. National Technical University of Athens, GRC, pp. 498-508. ISBN 9786188284494 (https://doi.org/10.7712/120219.6355.18709)
Preview |
Text.
Filename: Morais_etal_UNCECOMP2019_Machine_learning_tool_for_human_factors_evaluation.pdf
Accepted Author Manuscript Download (477kB)| Preview |
Abstract
The capability of learning from accidents as quickly as possible allows preventing repeated mistakes to happen. This has been shown by the small time interval between two accidents with the same aircraft model: the Boeing 737-8 MAX. However, learning from major accidents and subsequently update the developed accident models has been proved to be a cumbersome process. This is because safety specialists use to take a long period of time to read and digest the information, as the accident reports are usually very detailed, long and sometimes with a difficult language and structure. A strategy to automatically extract relevant information from report accidents and update model parameters is investigated. A machine-learning tool has been developed and trained on previous expert opinion on several accident reports. The intention is that for each new accident report that is issued, the machine can quickly identify the more relevant features in seconds-instead of waiting for some days for the expert opinion. This way, the model can be more quickly and dynamically updated. An application to the preliminary accident report of the 2018 Lion Air accident is provided to show the feasibility of the machine-learning proposed approach.
ORCID iDs
Morais, C., Yung, K. and Patelli, E. ORCID: https://orcid.org/0000-0002-5007-7247; Papadrakakis, M., Papadopoulos, V. and Stefanou, G.-
-
Item type: Book Section ID code: 71792 Dates: DateEvent24 June 2019Published31 March 2019AcceptedSubjects: Science > Mathematics > Electronic computers. Computer science
Technology > Engineering (General). Civil engineering (General)Department: Faculty of Engineering > Civil and Environmental Engineering Depositing user: Pure Administrator Date deposited: 18 Mar 2020 11:19 Last modified: 11 Nov 2024 15:20 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/71792