Discrete unified gas kinetic scheme for all Knudsen number flows. III. Binary gas mixtures of Maxwell molecules

Zhang, Yue and Zhu, Lianhua and Wang, Ruijie and Guo, Zhaoli (2018) Discrete unified gas kinetic scheme for all Knudsen number flows. III. Binary gas mixtures of Maxwell molecules. Physical Review E, 97 (5). 053306. ISSN 2470-0053 (https://doi.org/10.1103/PhysRevE.97.053306)

[thumbnail of Zhang-etal-PRE-2018-Discrete-unified-gas-kinetic-scheme-for-all-Knudsen]
Preview
Text. Filename: Zhang_etal_PRE_2018_Discrete_unified_gas_kinetic_scheme_for_all_Knudsen.pdf
Accepted Author Manuscript

Download (1MB)| Preview

Abstract

Recently a discrete unified gas kinetic scheme (DUGKS) in a finite-volume formulation based on the Boltzmann model equation has been developed for gas flows in all flow regimes. The original DUGKS is designed for flows of single-species gases. In this work, we extend the DUGKS to flows of binary gas mixtures of Maxwell molecules based on the Andries-Aoki-Perthame kinetic model [P. Andries, J. Stat. Phys. 106, 993 (2002)JSTPBS0022-471510.1023/A:1014033703134. A particular feature of the method is that the flux at each cell interface is evaluated based on the characteristic solution of the kinetic equation itself; thus the numerical dissipation is low in comparison with that using direct reconstruction. Furthermore, the implicit treatment of the collision term enables the time step to be free from the restriction of the relaxation time. Unlike the DUGKS for single-species flows, a nonlinear system must be solved to determine the interaction parameters appearing in the equilibrium distribution function, which can be obtained analytically for Maxwell molecules. Several tests are performed to validate the scheme, including the shock structure problem under different Mach numbers and molar concentrations, the channel flow driven by a small gradient of pressure, temperature, or concentration, the plane Couette flow, and the shear driven cavity flow under different mass ratios and molar concentrations. The results are compared with those from other reliable numerical methods. The results show that the proposed scheme is an effective and reliable method for binary gas mixtures in all flow regimes.