Sensitivity or Bayesian model updating : a comparison of techniques using the DLR- ARMOD test data

Patelli, Edoardo and Govers, Yves and Broggi, Matteo and Gomes, Herbert Martins and Link, Michael and Mottershead, John E. (2017) Sensitivity or Bayesian model updating : a comparison of techniques using the DLR- ARMOD test data. Archive of Applied Mechanics, 87 (5). pp. 905-925. ISSN 1432-0681 (https://doi.org/10.1007/s00419-017-1233-1)

[thumbnail of Patelli-etal-AAM-2017-Sensitivity-or-Bayesian-model-updating-a-comparison-of-techniques]
Preview
Text. Filename: Patelli_etal_AAM_2017_Sensitivity_or_Bayesian_model_updating_a_comparison_of_techniques.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (6MB)| Preview

Abstract

Deterministic model updating is now a mature technology widely applied to large-scale industrial structures. It is concerned with the calibration of the parameters of a single model based on one set of test data. It is, of course, well known that different analysts produce different finite element models, make different physics-based assumptions, and parameterize their models differently. Also, tests carried out on the same structure, by different operatives, at different times, under different ambient conditions produce different results. There is no unique model and no unique data. Therefore, model updating needs to take account of modeling and test-data variability. Much emphasis is now placed on what has become known as stochastic model updating where data are available from multiple nominally identical test structures. In this paper two currently prominent stochastic model updating techniques (sensitivity-based updating and Bayesian model updating) are described and applied to the DLR AIRMOD structure.

ORCID iDs

Patelli, Edoardo ORCID logoORCID: https://orcid.org/0000-0002-5007-7247, Govers, Yves, Broggi, Matteo, Gomes, Herbert Martins, Link, Michael and Mottershead, John E.;