S-adenosyl methionine cofactor modifications enhance the biocatalytic repertoire of small molecule C-alkylation

McKean, Iain J. W. and Sadler, Joanna C. and Cuetos, Anibal and Frese, Amina and Humphreys, Luke D. and Grogan, Gideon and Hoskisson, Paul A. and Burley, Glenn A. (2019) S-adenosyl methionine cofactor modifications enhance the biocatalytic repertoire of small molecule C-alkylation. Angewandte Chemie International Edition, 58 (49). pp. 17583-17588. ISSN 1433-7851 (https://doi.org/10.1002/anie.201908681)

[thumbnail of McKean-etal-ACIE-2019-S-adenosyl-methionine-cofactor-modifications-enhance-the-biocatalytic]
Preview
Text. Filename: McKean_etal_ACIE_2019_S_adenosyl_methionine_cofactor_modifications_enhance_the_biocatalytic.pdf
Accepted Author Manuscript

Download (1MB)| Preview

Abstract

A tandem enzymatic strategy to enhance the scope of C-alkylation of small molecules via the in situ formation of S-adenosyl methionine (SAM) cofactor analogues is described. A solvent-exposed channel present in the SAM-forming enzyme SalL tolerates 5′-chloro-5′-deoxyadenosine (ClDA) analogues modified at the 2-position of the adenine nucleobase. Coupling SalL-catalyzed cofactor production with C-(m)ethyl transfer to coumarin substrates catalyzed by the methyltransferase (MTase) NovO forms C-(m)ethylated coumarins in superior yield and greater substrate scope relative to that obtained using cofactors lacking nucleobase modifications. Establishing the molecular determinants that influence C-alkylation provides the basis to develop a late-stage enzymatic platform for the preparation of high value small molecules.