Fast electron propagation in high-density plasmas created by 1D shock wave compression : experiments and simulations
Santos, J. J. and Batani, D. and McKenna, P. and Baton, S. D. and Dorchies, F. and Dubrouil, A. and Fourment, C. and Hulin, S. and D'Humières, E. and Nicolaï, H. and Gremillet, L. and Debayle, A. and Honrubia, J. J. and Carpeggiani, P. and Veltcheva, M. and Quinn, M. N. and Brambrink, E. and Tikhonchuk, V. (2010) Fast electron propagation in high-density plasmas created by 1D shock wave compression : experiments and simulations. Journal of Physics: Conference Series, 244 (PART 2). 022060. ISSN 1742-6588 (https://doi.org/10.1088/1742-6596/244/2/022060)
Preview |
Text.
Filename: Santos_etal_JoP_2010_Fast_electron_propagation_in_high_density_plasmas_created_by_1D_shock_wave_compression.pdf
Final Published Version License: Download (533kB)| Preview |
Abstract
We present results from an experimental characterization of fast electron transport in high density plasmas created by 1D shock wave compression. The Kα fluorescence from a Cu layer embedded in Al or CH foil targets is measured. We use long laser pulses (LP) with 180 J, 1.5 ns, 0.53μm to compress the foils by shock wave propagation to 2-3 times their solid density and heat them to ∼ 4eV (close to the Fermi temperature). A counter-propagating high-intensity short laser pulse (SP), with 40 J, 1 ps, 57×1019 Wcm-2, generates intense currents of fast electrons which propagate through the deep regions of the target just before shock breakthrough. The results are compared to the uncompressed, solid density case (without the LP beam). The complete set of measurements is compared to numerical results, including a 2D hydrodynamic description of the compression and pre-pulse effects, 2D PIC simulations of the SP beam interaction and both hybrid and PIC simulations of the electron transport in the target depth and sheaths. In the case of the non-compressed targets we need to take fast electron refluxing into account to reproduce the experimental results. By exploring the domain of warm temperatures, we identify a regime for the incident fast electron current density, 1010 < jh < 1012 Acm-2, for which the collective mechanisms of electron transport differs appreciably between solid density and compressed matter.
ORCID iDs
Santos, J. J., Batani, D., McKenna, P. ORCID: https://orcid.org/0000-0001-8061-7091, Baton, S. D., Dorchies, F., Dubrouil, A., Fourment, C., Hulin, S., D'Humières, E., Nicolaï, H., Gremillet, L., Debayle, A., Honrubia, J. J., Carpeggiani, P., Veltcheva, M., Quinn, M. N., Brambrink, E. and Tikhonchuk, V.;-
-
Item type: Article ID code: 67091 Dates: DateEvent1 January 2010PublishedNotes: Deposited under CC-BY 3.0 with permission of IOP Publishing Ltd. Subjects: Science > Physics > Plasma physics. Ionized gases Department: Faculty of Science > Physics Depositing user: Pure Administrator Date deposited: 26 Feb 2019 07:45 Last modified: 01 Jan 2025 05:44 URI: https://strathprints.strath.ac.uk/id/eprint/67091