Attribute identification and predictive customisation using fuzzy clustering and genetic search for Industry 4.0 environments
Saldivar, Alfredo Alan Flores and Goh, Cindy and Li, Yun and Yu, Hongnian and Chen, Yi; (2017) Attribute identification and predictive customisation using fuzzy clustering and genetic search for Industry 4.0 environments. In: SKIMA 2016 - 2016 10th International Conference on Software, Knowledge, Information Management and Applications. IEEE, CHN, pp. 79-86. ISBN 9781509032976 (https://doi.org/10.1109/SKIMA.2016.7916201)
Preview |
Text.
Filename: Saldivar_etal_SKIMA_2016_fuzzy_clustering_and_genetic_search_for_Industry_4_0_environments.pdf
Accepted Author Manuscript Download (1MB)| Preview |
Abstract
Today s factory involves more services and customisation. A paradigm shift is towards 'Industry 4.0' (i4) aiming at realising mass customisation at a mass production cost. However, there is a lack of tools for customer informatics. This paper addresses this issue and develops a predictive analytics framework integrating big data analysis and business informatics, using Computational Intelligence (CI). In particular, a fuzzy c-means is used for pattern recognition, as well as managing relevant big data for feeding potential customer needs and wants for improved productivity at the design stage for customised mass production. The selection of patterns from big data is performed using a genetic algorithm with fuzzy c-means, which helps with clustering and selection of optimal attributes. The case study shows that fuzzy c-means are able to assign new clusters with growing knowledge of customer needs and wants. The dataset has three types of entities: specification of various characteristics, assigned insurance risk rating, and normalised losses in use compared with other cars. The fuzzy c-means tool offers a number of features suitable for smart designs for an i4 environment.
ORCID iDs
Saldivar, Alfredo Alan Flores, Goh, Cindy, Li, Yun ORCID: https://orcid.org/0000-0002-6575-1839, Yu, Hongnian and Chen, Yi;-
-
Item type: Book Section ID code: 65277 Dates: DateEvent1 May 2017Published15 October 2016AcceptedNotes: © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Subjects: Science > Mathematics > Electronic computers. Computer science
Technology > ManufacturesDepartment: Faculty of Engineering Depositing user: Pure Administrator Date deposited: 27 Aug 2018 12:12 Last modified: 17 Nov 2024 01:30 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/65277