Reactive control of a two-body point absorber using reinforcement learning

Anderlini, E. and Forehand, D.I.M. and Bannon, E. and Xiao, Q. and Abusara, M. (2018) Reactive control of a two-body point absorber using reinforcement learning. Ocean Engineering, 148. pp. 650-658. ISSN 0029-8018 (https://doi.org/10.1016/j.oceaneng.2017.08.017)

[thumbnail of Anderlini-etal-OC2018-Reactive-control-of-a-two-body-point-absorber-using-reinforcement]
Preview
Text. Filename: Anderlini_etal_OC2018_Reactive_control_of_a_two_body_point_absorber_using_reinforcement.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB)| Preview

Abstract

In this article, reinforcement learning is used to obtain optimal reactive control of a two-body point absorber. In particular, the Q-learning algorithm is adopted for the maximization of the energy extraction in each sea state. The controller damping and stiffness coefficients are varied in steps, observing the associated reward, which corresponds to an increase in the absorbed power, or penalty, owing to large displacements. The generated power is averaged over a time horizon spanning several wave cycles due to the periodicity of ocean waves, discarding the transient effects at the start of each new episode. The model of a two-body point absorber is developed in order to validate the control strategy in both regular and irregular waves. In all analysed sea states, the controller learns the optimal damping and stiffness coefficients. Furthermore, the scheme is independent of internal models of the device response, which means that it can adapt to variations in the unit dynamics with time and does not suffer from modelling errors.

ORCID iDs

Anderlini, E. ORCID logoORCID: https://orcid.org/0000-0002-7353-2134, Forehand, D.I.M., Bannon, E., Xiao, Q. ORCID logoORCID: https://orcid.org/0000-0001-8512-5299 and Abusara, M.;