Schwarz preconditioning for high order edge element discretizations of the time-harmonic Maxwell's equations
Bonazzoli, Marcella and Dolean, Victorita and Pasquetti, Richard and Rapetti, Francesca; Lee, Chang-Ock and Cai, Xiao-Chuan and Hansford, Victoria and Kim, Hyea Hyun and Klawonn, Axel and Park, Eun-Jae and Widlund, Olof B., eds. (2017) Schwarz preconditioning for high order edge element discretizations of the time-harmonic Maxwell's equations. In: Domain Decomposition Methods in Science and Engineering XXIII. Lecture Notes in Computational Science and Engineering . Springer-Verlag, KOR, pp. 117-124. ISBN 9783319523897 (https://doi.org/10.1007/978-3-319-52389-7_10)
Preview |
Text.
Filename: Bonazzoli_etal_2017_Schwarz_preconditioning_for_high_order_edge_element.pdf
Accepted Author Manuscript Download (452kB)| Preview |
Abstract
We focus on high order edge element approximations of waveguide problems. For the associated linear systems, we analyze the impact of two Schwarz preconditioners, the Optimized Additive Schwarz (OAS) and the Optimized Restricted Additive Schwarz (ORAS), on the convergence of the iterative solver.
ORCID iDs
Bonazzoli, Marcella, Dolean, Victorita ORCID: https://orcid.org/0000-0002-5885-1903, Pasquetti, Richard and Rapetti, Francesca; Lee, Chang-Ock, Cai, Xiao-Chuan, Hansford, Victoria, Kim, Hyea Hyun, Klawonn, Axel, Park, Eun-Jae and Widlund, Olof B.-
-
Item type: Book Section ID code: 63035 Dates: DateEvent18 March 2017Published22 March 2015AcceptedSubjects: Science > Mathematics Department: University of Strathclyde > University of Strathclyde Depositing user: Pure Administrator Date deposited: 25 Jan 2018 10:33 Last modified: 07 Jan 2025 13:56 URI: https://strathprints.strath.ac.uk/id/eprint/63035