Congruence between latent class and k-modes analyses in the identification of oncology patients with distinct symptom experiences
Papachristou, Nikoloas and Barnaghi, Payam and Cooper, Bruce A. and Hu, Xiao and Maguire, Roma and Apostolidis, Kathi and Armes, Jo and Conley, Yvette P. and Hammer, Marilyn and Katsaragakis, Stylianos and Kober, Kord M. and Levine, Jon D. and McCann, Lisa and Patiraki, Elisabeth and Paul, Steven M. and Ream, Emma and Wright, Fay and Miaskowski, Christine (2017) Congruence between latent class and k-modes analyses in the identification of oncology patients with distinct symptom experiences. Journal of Pain and Symptom Management. ISSN 0885-3924 (https://doi.org/10.1016/j.jpainsymman.2017.08.020)
Preview |
Text.
Filename: Papchristou_etal_JPSM_2018_k_modes_analyses_in_the_identification_of_oncology_patients_with_distinct_symptom_experiences.pdf
Accepted Author Manuscript License: Download (440kB)| Preview |
Abstract
CONTEXT: Risk profiling of oncology patients based on their symptom experience assists clinicians to provide more personalized symptom management interventions. Recent findings suggest that oncology patients with distinct symptom profiles can be identified using a variety of analytic methods. OBJECTIVES: The objective of this study was to evaluate the concordance between the number and types of subgroups of patients with distinct symptom profiles using latent class analysis and K-modes analysis. METHODS: Using data on the occurrence of 25 symptoms from the Memorial Symptom Assessment Scale, that 1329 patients completed prior to their next dose of chemotherapy (CTX), Cohen's kappa coefficient was used to evaluate for concordance between the two analytic methods. For both latent class analysis and K-modes, differences among the subgroups in demographic, clinical, and symptom characteristics, as well as quality of life outcomes were determined using parametric and nonparametric statistics. RESULTS: Using both analytic methods, four subgroups of patients with distinct symptom profiles were identified (i.e., all low, moderate physical and lower psychological, moderate physical and higher Psychological, and all high). The percent agreement between the two methods was 75.32%, which suggests a moderate level of agreement. In both analyses, patients in the all high group were significantly younger and had a higher comorbidity profile, worse Memorial Symptom Assessment Scale subscale scores, and poorer QOL outcomes. CONCLUSION: Both analytic methods can be used to identify subgroups of oncology patients with distinct symptom profiles. Additional research is needed to determine which analytic methods and which dimension of the symptom experience provide the most sensitive and specific risk profiles
ORCID iDs
Papachristou, Nikoloas, Barnaghi, Payam, Cooper, Bruce A., Hu, Xiao, Maguire, Roma ORCID: https://orcid.org/0000-0001-7935-3447, Apostolidis, Kathi, Armes, Jo, Conley, Yvette P., Hammer, Marilyn, Katsaragakis, Stylianos, Kober, Kord M., Levine, Jon D., McCann, Lisa ORCID: https://orcid.org/0000-0002-5322-5778, Patiraki, Elisabeth, Paul, Steven M., Ream, Emma, Wright, Fay and Miaskowski, Christine;-
-
Item type: Article ID code: 62894 Dates: DateEvent28 August 2017Published28 August 2017Published Online17 August 2017AcceptedSubjects: Medicine > Internal medicine > Neoplasms. Tumors. Oncology (including Cancer) Department: Faculty of Science > Computer and Information Sciences
Strategic Research Themes > Health and WellbeingDepositing user: Pure Administrator Date deposited: 16 Jan 2018 12:21 Last modified: 31 Dec 2024 11:50 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/62894