Resolvent estimates in homogenisation of periodic problems of fractional elasticity
Waurick, Marcus and Cherednichenko, Kirill (2017) Resolvent estimates in homogenisation of periodic problems of fractional elasticity. Preprint / Working Paper. arXiv.org, Ithica, NY.
Preview |
Text.
Filename: Cherednichenko_Waurick_Arxiv_2017_Resolvent_estimates_in_homogenisation_of_periodic.pdf
Final Published Version Download (222kB)| Preview |
Abstract
We provide operator-norm convergence estimates for solutions to a time-dependent equation of fractional elasticity in one spatial dimension, with rapidly oscillating coefficients that represent the material properties of a viscoelastic composite medium. Assuming periodicity in the coefficients, we prove operator-norm convergence estimates for an operator fibre decomposition obtained by applying to the original fractional elasticity problem the Fourier--Laplace transform in time and Gelfand transform in space. We obtain estimates on each fibre that are uniform in the quasimomentum of the decomposition and in the period of oscillations of the coefficients as well as quadratic with respect to the spectral variable. On the basis of these uniform estimates we derive operator-norm-type convergence estimates for the original fractional elasticity problem, for a class of sufficiently smooth densities of applied forces.
-
-
Item type: Monograph(Preprint / Working Paper) ID code: 61488 Dates: [error in script] Keywords: fractional elasticity, homogenisation, Gelfand transform, operator-norm convergence, resolvent estimates, Probabilities. Mathematical statistics, Statistics and Probability Subjects: Science > Mathematics > Probabilities. Mathematical statistics Department: Faculty of Science > Mathematics and Statistics Depositing user: Pure Administrator Date deposited: 07 Aug 2017 10:01 Last modified: 23 Sep 2018 09:46 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/61488