Integrated simulation approach for laser-driven fast ignition

Wang, W.-M. and Gibbon, P. and Sheng, Z.-M. and Li, Y.-T. (2015) Integrated simulation approach for laser-driven fast ignition. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 91 (1). 013101. ISSN 2470-0053 (https://doi.org/10.1103/PhysRevE.91.013101)

Full text not available in this repository.Request a copy

Abstract

An integrated simulation approach fully based on the particle-in-cell (PIC) model is proposed, which involves both fast-particle generation via laser solid-density plasma interaction and transport and energy deposition of the particles in extremely high-density plasma. It is realized by introducing two independent systems in a simulation, where the fast-particle generation is simulated by a full PIC system and the transport and energy deposition computed by a second PIC system with a reduced field solver. Data of the fast particles generated in the full PIC system are copied to the reduced PIC system in real time as the fast-particle source. Unlike a two-region approach, which takes a single PIC system and two field solvers in two plasma density regions, respectively, the present one need not match the field solvers since the reduced field solver and the full solver adopted respectively in the two systems are independent. A simulation case is presented, which demonstrates that this approach can be applied to integrated simulation of fast ignition with real target densities, e.g., 300 g/cm3.