Anomaly detection techniques for the condition monitoring of tidal turbines
Galloway, Grant and Catterson, Victoria and Love, Craig and Robb, Andrew (2014) Anomaly detection techniques for the condition monitoring of tidal turbines. In: Annual Conference of the Prognostics and Health Management Society 2014 (PHM), 2014-09-29 - 2014-10-02, Hilton Fort Worth. (http://www.phmsociety.org/node/1390)
PDF.
Filename: Galloway_etal_PHM2014_anomaly_detection_techniques.pdf
Final Published Version License: Download (657kB) |
Abstract
Harnessing the power of currents from the sea bed, tidal power has great potential to provide a means of renewable energy generation more predictable than similar technologies such as wind power. However, the nature of the operating environment provides challenges, with maintenance requiring a lift operation to gain access to the turbine above water. Failures of system components can therefore result in prolonged periods of downtime while repairs are completed on the surface, removing the system’s ability to produce electricity and damaging revenues. The utilization of effective condition monitoring systems can therefore prove particularly beneficial to this industry. This paper explores the use of the CRISP-DM data mining process model for identifying key trends within turbine sensor data, to define the expected response of a tidal turbine. Condition data from an operational 1 MW turbine, installed off the coast of Orkney, Scotland, was used for this study. The effectiveness of modeling techniques, including curve fitting, Gaussian mixture modeling, and density estimation are explored, using tidal turbine data in the absence of faults. The paper shows how these models can be used for anomaly detection of live turbine data, with anomalies indicating the possible onset of a fault within the system.
ORCID iDs
Galloway, Grant ORCID: https://orcid.org/0000-0003-2861-6504, Catterson, Victoria ORCID: https://orcid.org/0000-0003-3455-803X, Love, Craig and Robb, Andrew;-
-
Item type: Conference or Workshop Item(Paper) ID code: 49414 Dates: DateEventSeptember 2014PublishedSubjects: Technology > Electrical engineering. Electronics Nuclear engineering Department: Faculty of Engineering > Electronic and Electrical Engineering Depositing user: Pure Administrator Date deposited: 30 Sep 2014 12:11 Last modified: 17 Nov 2024 20:05 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/49414