Micro-LED pumped polymer laser : a discussion of future pump sources for organic lasers

Herrnsdorf, Johannes and Wang, Yue and McKendry, Jonathan and Gong, Zheng and Massoubre, David and Guilhabert, Benoit Jack Eloi and Tsiminis, Georgios and Turnbull, Graham A and Samuel, Ifor D. W. and Laurand, Nicolas and Gu, Erdan and Dawson, Martin (2013) Micro-LED pumped polymer laser : a discussion of future pump sources for organic lasers. Laser and Photonics Reviews, 7 (6). pp. 1065-1078. ISSN 1863-8880 (https://doi.org/10.1002/lpor.201300110)

[thumbnail of Herrnsdorf-et-al-LPR2013-micro-led-pumped-polymer-laser]
Preview
Text. Filename: Herrnsdorf_et_al_LPR2013_micro_led_pumped_polymer_laser.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB)| Preview

Abstract

Optical pumping conditions for organic solid-state lasers (OSLs) are discussed with particular emphasis on the use of gallium nitride based light-emitting diodes (LEDs) as pump sources. LEDs operate in a regime where the pump should be optimized for a short rise time and high peak intensity, whereas fall time and overall pulse duration are less important. Lasers pumped with this approach need to have very low thresholds which can now be routinely created using (one-dimensional) distributed feedback lasers. In this particular case stripe-shaped excitation with linearly polarized light is beneficial. Arrays of micron-sized flip-chip LEDs have been arranged in an appropriate stripe shape and the array dimensions were chosen such that the divergence of LED emission does not cause a loss in peak intensity. These micro-LED arrays have successfully been used to pump OSLs with thresholds near 300 W/cm2 (∼9 ns rise time, 35 ns pulse duration), paving the way for compact arrays of indirectly electrically pumped OSLs.