Snake peptides
Harvey, A.L.; Kastin, Abba, ed. (2013) Snake peptides. In: Handbook of Biologically Active Peptides. Academic Press, pp. 451-460. ISBN 9780123850959 (https://doi.org/10.1016/B978-0-12-385095-9.00062-2)
Full text not available in this repository.Request a copyAbstract
Snake venoms are complex mixtures of small molecules, peptides, and proteins. Most of the biologically active toxins are peptides or enzymes. This chapter covers the nonenzymatically active peptides and toxins. The peptides belong to several structural classes, and they have many different biological actions. The best characterized peptides are the so-called three-finger toxins that have 60–70 amino acid residues in three peptide loops stabilized by four disulfide bridges. Despite their common 3D shape, these peptides can interfere selectively with different biological targets, including nicotinic and muscarinic acetylcholine receptors, acetylcholinesterase, ion channels, and cell membranes. Other small peptides can block K+ or Ca2+ channels and are based on Kunitz serine proteinase inhibitors (~60 amino acid residues and three disulfide bonds), whereas other toxins have different molecular scaffolds and different pharmacological activities. Many snake venom peptides are useful pharmacological tools, whereas others are leads for drug development.
-
-
Item type: Book Section ID code: 45396 Dates: DateEvent1 January 2013PublishedSubjects: Medicine > Therapeutics. Pharmacology Department: Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical Sciences Depositing user: Pure Administrator Date deposited: 25 Oct 2013 08:39 Last modified: 24 Nov 2024 15:36 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/45396