Systematic study of effect of cross-drafts and nozzle diameter on shield gas coverage

Beyer, V. and Campbell, Stuart and Ramsey, Gemma and Galloway, Alexander and Moore, A.J. and McPherson, Norman (2013) Systematic study of effect of cross-drafts and nozzle diameter on shield gas coverage. Science and Technology of Welding and Joining, 18 (8). pp. 652-660. ISSN 1362-1718 (https://doi.org/10.1179/1362171813Y.0000000143)

[thumbnail of Campbell_SW_Galloway_AM_et_al_Pure_Systematic_study_of_effect_of_cross_drafts_and_nozzle_diameter_on_shield_gas_coverage_in_MIG_welding_Sep_2013.pdf] PDF. Filename: Campbell_SW_Galloway_AM_et_al_Pure_Systematic_study_of_effect_of_cross_drafts_and_nozzle_diameter_on_shield_gas_coverage_in_MIG_welding_Sep_2013.pdf
Preprint

Download (1MB)

Abstract

A shield gas flow rate of 15–20 L min21 is typically specified in metal inert gas welding, but is often adjusted to as high as 36 L min21 by welders in practice. Not only is this overuse of shield gas wasteful, but uncontrolled high gas flows can lead to significant turbulence induced porosity in the final weld. There is therefore a need to understand and control the minimum shield gas flow rate used in practical welding where cross-drafts may affect the coverage. Very low gas coverage or no shielding leads to porosity and spatter development in the weld region. A systematic study is reported of the weld quality achieved for a range of shield gas flow rates, cross-draft speeds and nozzle diameters using optical visualisation and numerical modelling to determine the shield gas coverage. As a consequence of the study, the shield gas flow has been reduced to 12 L min21 in production welding, representing a significant process cost saving and reduced environmental impact with no compromise to the final weld quality.

ORCID iDs

Beyer, V., Campbell, Stuart, Ramsey, Gemma, Galloway, Alexander ORCID logoORCID: https://orcid.org/0000-0003-0143-8314, Moore, A.J. and McPherson, Norman ORCID logoORCID: https://orcid.org/0000-0003-4008-8724;