Novel numerical optimisation of the Hohmann Spiral Transfer
Owens, Steven Robert and Macdonald, Malcolm (2013) Novel numerical optimisation of the Hohmann Spiral Transfer. In: 64th International Astronautical Congress 2013, 2013-09-23 - 2013-09-27.
PDF.
Filename: Owens_S_Macdonald_M_Pure_Novel_numerical_optimisation_of_the_Hohmann_Spiral_Transfer_September_2013.pdf
Preprint Download (942kB) |
Abstract
As the revenue of commercial spacecraft platforms is generated by its payload, of which the capacity is maximised when fuel-mass is minimised, there is great interest in ensuring the fuel required for the trajectory to deliver the satellite to its working orbit is minimum. This paper presents an optimisation study of a novel orbit transfer, recently introduced by the authors through an analytical analysis, known as the Hohmann Spiral Transfer . The transfer is analogous to the bi-elliptic transfer but incorporating high and low-thrust propulsion. This paper has shown that substantial fuel mass savings are possible when utilizing the HST. For a transfer to Geostationary Earth Orbit it is shown that a fuel mass saving of approximately 320 kg (~ 5 - 10% of mwet ) is possible for a wet mass of 3000-6000 kg – whilst satisfying a time constraint of 90 days. Several trends in the gathered data are also identified that determine when the HST with high or low-thrust plane change should be used to offer the greatest fuel mass benefit.
ORCID iDs
Owens, Steven Robert ORCID: https://orcid.org/0000-0001-8688-5812 and Macdonald, Malcolm ORCID: https://orcid.org/0000-0003-4499-4281;-
-
Item type: Conference or Workshop Item(Paper) ID code: 44900 Dates: DateEvent23 September 2013PublishedNotes: COPYRIGHT OWNED BY AUTHOR STEVEN ROBERT OWENS Subjects: Technology > Mechanical engineering and machinery
Technology > Motor vehicles. Aeronautics. AstronauticsDepartment: Faculty of Engineering > Mechanical and Aerospace Engineering
Technology and Innovation Centre > Advanced Engineering and ManufacturingDepositing user: Pure Administrator Date deposited: 17 Sep 2013 15:15 Last modified: 07 Jan 2025 02:40 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/44900