Individual energetics and the equilibrium demography of structured populations
Gurney, William and Middleton, D.A.J. and Nisbet, R.M. and McCauley, E. and Murdoch, W.W. and de Roos, A. (1996) Individual energetics and the equilibrium demography of structured populations. Theoretical Population Biology, 49 (3). pp. 344-368. ISSN 0040-5809 (https://doi.org/10.1006/tpbi.1996.0017)
Full text not available in this repository.Request a copyAbstract
This paper considers the relationship between the demographic mechanisms of population control and the energetics of the individuals who comprise the population. We examine the equilibrium properties of a class of structured population models in which individuals compete for some environmental resource (such as food) and demonstrate that population demography is independent of the nature of the feedback loop which establishes the equilibrium state. We thus derive general insights into the influence exerted by individual energetic and allocation strategies on population average demographic characteristics. We show that models of individual energetics which produce apparently very similar predictions at the individual level can result in very different behaviour at the population level. In addition, we observe that different models of individual mortality can imply marked differences in population demography and that the common assumption of constant mortality can be responsible for potentially unrealistic model behaviour. Our results emphasise the substantial data requirements for parameterising and testing individual-based models.
-
-
Item type: Article ID code: 41744 Dates: DateEventJune 1996PublishedSubjects: Science > Mathematics > Probabilities. Mathematical statistics Department: Faculty of Science > Mathematics and Statistics Depositing user: Pure Administrator Date deposited: 26 Oct 2012 10:59 Last modified: 11 Nov 2024 10:16 URI: https://strathprints.strath.ac.uk/id/eprint/41744