Breakdown processes in gas micro-bubbles in liquids under electric stress
Atrazhev, Vladimir and Vorob'ev, V.S. and Timoshkin, Igor and MacGregor, Scott and Given, M and Wilson, Mark and Wang, Tao (2012) Breakdown processes in gas micro-bubbles in liquids under electric stress. IEEE Transactions on Dielectrics and Electrical Insulation, 19 (5). pp. 1552-1558. ISSN 1070-9878 (https://doi.org/10.1109/TDEI.2012.6311500)
Full text not available in this repository.Request a copyAbstract
The present work is concerned with a theoretical analysis of the breakdown characteristics of gas-filled micro-bubbles formed in insulating liquids stressed with electric field. It is assumed that the gas inside these bubbles is air which allows the use of experimental Paschen curve data for air in this analysis. Two main discharge mechanisms have been considered, the Townsend discharge and impulse breakdown. The combination of bubble diameter, D, gas pressure, p, and duration, τ, of the field stress determines the type of breakdown. Parameters which are required for the Townsend mechanism of breakdown and impulse breakdown to occur inside gas bubbles have been obtained and these conditions have been represented as boundary lines in the (Dp, τp) coordinate system. It is shown that there are such combinations of these parameters which satisfy neither Townsend nor impulse breakdown conditions. Experimental data on breakdown in air for these intermediate values of (Dp, tp) between the Townsend and the impulse discharges are not available in the literature and the breakdown behavior under such conditions is not well defined.
ORCID iDs
Atrazhev, Vladimir, Vorob'ev, V.S., Timoshkin, Igor ORCID: https://orcid.org/0000-0002-0380-9003, MacGregor, Scott ORCID: https://orcid.org/0000-0002-0808-585X, Given, M ORCID: https://orcid.org/0000-0002-6354-2486, Wilson, Mark ORCID: https://orcid.org/0000-0003-3088-8541 and Wang, Tao ORCID: https://orcid.org/0000-0003-3054-0772;-
-
Item type: Article ID code: 41532 Dates: DateEventOctober 2012PublishedSubjects: Technology > Electrical engineering. Electronics Nuclear engineering Department: Faculty of Engineering > Electronic and Electrical Engineering Depositing user: Pure Administrator Date deposited: 18 Oct 2012 09:59 Last modified: 11 Nov 2024 10:14 URI: https://strathprints.strath.ac.uk/id/eprint/41532