Optimum flux distribution with harmonic injection for a multiphase induction machine using genetic algorithms
Abdel-Khalik, A. S. and Gadoue, S. M. and Masoud, M. I. and Wiliams, B. W. (2011) Optimum flux distribution with harmonic injection for a multiphase induction machine using genetic algorithms. IEEE Transactions on Energy Conversion, 26 (2). pp. 501-512. ISSN 0885-8969 (https://doi.org/10.1109/TEC.2010.2093139)
Full text not available in this repository.Request a copyAbstract
This paper investigates a nontriplen multiphase induction machine when fed with harmonic current injection with different sequences for an open loop optimized flux distribution that produce a quasi-square wave in the machine air gap. This maximizes iron utilization, giving more torque per ampere. The relation between the fundamental and other harmonic components can be determined for the best iron utilization using genetic algorithms where optimum flux distribution with different injected harmonic order can be obtained. This means, the target is to optimize the flux distribution during no-load to determine the optimum constants that guarantee approximate square wave air-gap flux. The paper focuses on an 11-phase machine that can be excited with harmonics up to the ninth. The technique is assessed using both winding function and finite element analysis methods. The prototype machine is fed from an 11-phase inverter. The system DSP control using genetic algorithm produces an optimum flux distribution by using winding sequence and harmonic current injection. Simulation results for the 11-phase dq model and prototype drive experimental results are presented.
-
-
Item type: Article ID code: 40676 Dates: DateEventJune 2011PublishedSubjects: Technology > Electrical engineering. Electronics Nuclear engineering Department: Faculty of Engineering > Electronic and Electrical Engineering Depositing user: Pure Administrator Date deposited: 02 Aug 2012 13:05 Last modified: 05 Jan 2025 09:26 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/40676