Mean-field theory of a nematic liquid crystal doped with anisotropic nanoparticles
Gorkunov, M.V. and Osipov, Mikhail (2011) Mean-field theory of a nematic liquid crystal doped with anisotropic nanoparticles. Soft Matter, 7 (9). pp. 4348-4356. ISSN 1744-6848 (https://doi.org/10.1039/C0SM01398F)
Full text not available in this repository.Request a copyAbstract
In the framework of molecular mean-field theory we study the effect of nanoparticles embedded in nematic liquid crystals on the orientational ordering and nematic–isotropic phase transition. We show that spherically isotropic nanoparticles effectively dilute the liquid crystal medium and decrease the nematic–isotropic transition temperature. At the same time, anisotropic nanoparticles become aligned by the nematic host and, reciprocally, improve the liquid crystal alignment. The theory clarifies the microscopic origin of the experimentally observed shift of the isotropic–nematic phase transition and an improvement of the nematic order in composite materials. A considerable softening of the first order nematic–isotropic transition caused by strongly anisotropic nanoparticles is also predicted.
ORCID iDs
Gorkunov, M.V. and Osipov, Mikhail ORCID: https://orcid.org/0000-0002-1836-1854;-
-
Item type: Article ID code: 37721 Dates: DateEvent2011PublishedSubjects: Science > Mathematics > Probabilities. Mathematical statistics Department: Faculty of Science > Mathematics and Statistics Depositing user: Pure Administrator Date deposited: 20 Feb 2012 09:32 Last modified: 19 Jan 2025 11:23 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/37721