Crystal plasticity and failure at metal/ceramic interfaces: from nano to macro
Amir, Muhammad and Schmauder, Siegfried (2008) Crystal plasticity and failure at metal/ceramic interfaces: from nano to macro. In: 2008 TMS Annual Meeting and Exhibition, 2008-03-09.
Full text not available in this repository.Request a copyAbstract
Deformation and fracture at metal/ceramic interfaces are related to local processes at the crack tip. Internal interfaces play a prominent role in metal/matrix composites between ceramic (such as Al<sub>2</sub>O<sub>3-</sub>) particles and a metallic matrix, e.g. Al. Despite their widespread use, a basic understanding of these interfaces is still underway. The deformation behaviour of niobium single crystals is simulated using crystal plasticity theory. Good agreement between experiment and simulation results was found. The second part provides results on effects of the different niobium single crystalline material orientations on crack initiation energies. Crack propagation analyses of niobium/alumina bicrystal interface fracture are performed using a cohesive modelling approach for three different orientations of single crystalline niobium. Parametric studies are presented. The results show that cohesive strength has a stronger effect on the macroscopic fracture energy as compared to the work of adhesion. In the last part, a correlation among the macroscopic fracture energy, cohesive strength, work of adhesion and the yield stress of niobiu single crystalline material will be derived.
-
-
Item type: Conference or Workshop Item(Paper) ID code: 37327 Dates: DateEvent2008PublishedSubjects: Technology > Engineering (General). Civil engineering (General) > Engineering design Department: Faculty of Engineering > Design, Manufacture and Engineering Management Depositing user: Pure Administrator Date deposited: 03 Feb 2012 12:33 Last modified: 11 Nov 2024 16:33 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/37327