A thermomechanical crystal plasticity based constitutive model for ultrasonic consolidation process

Amir, Muhammad and El Sayed, Tamer (2012) A thermomechanical crystal plasticity based constitutive model for ultrasonic consolidation process. Computational Materials Science, 51. pp. 241-251. ISSN 0927-0256 (https://doi.org/10.1016/j.commatsci.2011.07.023)

Full text not available in this repository.Request a copy

Abstract

We present a micromechanics-based thermomechanical constitutive model to simulate the ultrasonic consolidation process. Model parameters are calibrated using an inverse modeling approach. A comparison of the simulated response and experimental results for uniaxial tests validate and verify the appropriateness of the proposed model. Moreover, simulation results of polycrystalline aluminum using the identified crystal plasticity based material parameters are compared qualitatively with the electron back scattering diffraction (EBSD) results reported in the literature. The validated constitutive model is then used to simulate the ultrasonic consolidation process at sub-micron scale where an effort is exerted to quantify the underlying micromechanisms involved during the ultrasonic consolidation process.