Distributed crystal fiber sensing for extreme environments

Dalzell, Craig J. and Han, Thomas P. J. and Ruddock, Ivan S. (2012) Distributed crystal fiber sensing for extreme environments. IEEE Sensors Journal, 12 (1). pp. 164-167. ISSN 1530-437X (https://doi.org/10.1109/JSEN.2011.2115998)

Full text not available in this repository.Request a copy

Abstract

Distributed sensing of temperature can be achieved by using time-correlated two-photon excited fluorescence (TPF). To assess the extension of this technique to single-crystal fibers for high-temperature applications, various aspects are considered including the two-photon absorption cross-section (delta), dopant density, and the geometry of single crystal fibers. By comparing the fluorescence yield for two-photon excitation with that for single-photon excitation of the same transition, delta for ruby was measured over the 0.8-1.2 mu m range with maximum room temperature values of 5.9 x 10(-3) GM for e-polarization and 4.6 x 10(-3) GM for o-polarization at 840 nm. It is shown that values of this magnitude are adequate for a practical TPF-based crystal fiber sensor to be realized.

ORCID iDs

Dalzell, Craig J., Han, Thomas P. J. ORCID logoORCID: https://orcid.org/0000-0002-2303-6861 and Ruddock, Ivan S.;